已知函数在[1,+∞)上为增函数,且
,
,
∈R.
(1)求θ的值;
(2)若在[1,+∞)上为单调函数,求m的取值范围;
(3)设,若在[1,e]上至少存在一个
,使得
成立,求
的取值范围.
已知函数有三个极值点。
(I)证明:;
(II)若存在实数c,使函数在区间
上单调递减,求
的取值范围。
已知
⑴ 设,求
.
⑵ 如果,求实数
的值.
设f(x)=a ln x++
x+1,其中a∈R,曲线y=f(x)在点(1,f(1))处的切线垂直于y轴.(1)求a的值;(2)求函数f(x)的极值.
个排成一排,在下列情况下,各有多少种不同排法?
(1)甲排头,(2)甲不排头,也不排尾,(3)甲、乙、丙三人必须在一起,
(4)甲、乙之间有且只有两人,(5)甲、乙、丙三人两两不相邻。
(本小题满分10分)选修4-5:不等式选讲
设关于的不等式
.
(I) 当,解上述不等式。
(II)若上述关于的不等式有解,求实数
的取值范围。