(本题8分)如图,在直角坐标系中,的两条直角边
分别在
轴的负半轴,
轴的负半轴上,且
.将
绕点
按顺时针方向旋转
,再把所得的像沿
轴正方向平移1个单位,得
.
(1)写出点
的坐标;
(2)求点
和点
之间的距离.
(本小题满分10分)如图所示,AB=AC,AB为⊙O的直径,AC、BC分别交⊙O于E、D,连结ED、BE.
(1)试判断DE与BD是否相等,并说明理由;
(2)如果BC=6,AB=5,求BE的长.
(本小题满分8分)甲口袋中装有3个相同的小球,它们分别写有数值﹣1,2,5;乙口袋中装有3个相同的小球,它们分别写有数值﹣4,2,3.现从甲口袋中随机取一球,记它上面的数值为x,再从乙口袋中随机取一球,记它上面的数值为y.设点A的坐标为(x,y).
(1)请用树状图或列表法表示点A的坐标的各种可能情况;
(2)求点A落在的概率.
(本小题满分8分)如图,在⊿ABC中,AB=BC,点D在AB的延长线上.
(1)利用尺规按下列要求作图,并在图中标明相应的字母(保留作图痕迹,不写作法).
①作∠CBD的平分线BM ;
②作边BC上的中线AE,并延长AE交BM于点F;
(2)在(1)的基础上,连接CF,判断四边形ABFC的形状,并说明理由.
(本小题满分6分)先化简,再求值:,其中
是不等式组
的整数解.
如图,在平面直角坐标系中,抛物线与x轴的一个交点为A(2,0),与y轴的交点为C,对称轴是
,对称轴与x轴交于点B.
(1)求抛物线的函数表达式;
(2)经过B,C的直线l平移后与抛物线交于点M,与x轴交于点N,当以B,C,M,N为顶点的四边形是平行四边形时,求出点M的坐标;
(3)若点D在x轴上,在抛物线上是否存在点P,使得△PBD≌△PBC?若存在,直接写出点P的坐标;若不存在,请说明理由.