某单位欲招聘一名员工,现有三人竞聘该职位,他们的笔试成绩和口试成绩(单位:分)分别用两种方式进行了统计,如表一和图一
请将表一和图一中的空缺部分补充完整;
竞聘的最后一个程序是由该单位的
名职工进行投票,三位竞聘者的得票情
况如图二(没有弃权票,每名职工只能推荐一个),请计算每人的得票数;若每票计
分,该单位将笔试、口试、得票三项测试得分按
的比例确定
个人成绩,请计算三位竞聘者的最后成绩,并根据成绩判断谁能竞聘成功.
实数a、b在数轴上的位置如图,化简
如图,矩形OABC在平面直角坐标系xoy中,点A在x轴的正半轴上,点C在y轴的正半轴上,OA=4,OC=3,若抛物线的顶点在BC边上,且抛物线经过O、A两点,直线AC交抛物线于点D。
(1)求抛物线的解析式;
(2)求点D的坐标;
(3)若点M在抛物线上,点N在x轴上,是否存在以点A、D、M、N为顶点的四边形是平行四边形?若存在,求出点N的坐标;若不存在,请说明理由。
在矩形ABCD中,点E在BC边上,过E作EF⊥AC于F,G为线段AE的中点,连接BF、FG、GB.设=k.
(1)证明:△BGF是等腰三角形;
(2)当k为何值时,△BGF是等边三角形?并说明理由。
(3)我们知道:在一个三角形中,等边所对的角相等;反过来,等角所对的边也相等.事实上,在一个三角形中,较大的边所对的角也较大;反之也成立.利用上述结论,探究:当△BGF分别为锐角、直角、钝角三角形时,k的取值范围.
直线y=x+b与x轴交于点C(4,0),与轴交于点B,并与双曲线y=
(x<0)交于点A(-1,n)。
(1)求直线与双曲线的解析式。
(2)连接OA,求∠OAB的正弦值。
(3)若点D在x轴的正半轴上,是否存在以点D、C、B构成的三角形与△OAB相似?若存在求出D点的坐标,若不存在,请说明理由。
有一人患了流感,经过两轮传染后共有64人患了流感.
(1)求每轮传染中平均一个人传染了几个人?
(2)如果不及时控制,第三轮将又有多少人被传染?