如图,平面直角坐标系中,点A坐标(2,0),点B是y轴上的一个动点,连结AB,取AB中点M,将线段AM绕着点A顺时针方向旋转90°得到线段AN,连结ON、BN,ON与AB所在直线交于点P,设点B的坐标为(0,t)(1)当t>0时,用t的代数式表示点N的坐标;
(2)设△OBN的面积为S,求S关于t的函数关系式;
(3)是否存在点B,使得△ABN与△ANP相似?若存在,求出符合条件的点B的坐标,若不存在,请说明理由。
已知:如图,∥
,
。
求证:。
解不等式组,并将它的解集在数轴上表示出来。
解不等式,并写出它的非正整数解。
解方程组:
如图,矩形OABC的边OA在x轴正半轴上,边OC在y轴正半轴上,B点的坐标为(1,3).矩形O'A'BC'是矩形OABC绕B点逆时针旋转得到的.O'点恰好在x轴的正半轴上, O'C'交AB于点D.
(1)求点O'的坐标,并判断△O'DB的形状(要说明理由)(4分)
(2)求边C'O'所在直线的解析式.(4分)
(3)延长BA到M使AM=1,在(2)中求得的直线上是否存在点P,使得ΔPOM是以线段OM为直角边的直角三角形?若存在,请直接写出P点的坐标;若不存在,请说明理由.(2分)