已知:如图1,在Rt⊿ACB中,∠C=90°,AC=4cm,BC=3cm,点P由点B出发沿BA方向向点A匀速运动,速度为1cm/s;点Q由点A出发沿AC方向向点C匀速运动,速度为2cm/s;连接PQ.若设运动的时间为t(s)(0<t<2).解答下列问题:①.当t为何值时,PQ∥BC?
②.设⊿AQP的面积为y(cm
),求y与t之间的函数关系式;
③.是否存在某一时刻t,使线段PQ恰好把Rt⊿ACB的周长和面积同时平分?若存在,求出此时t的值;若不存在,说明理由;
④.如图2,连接PC,并把⊿PQC沿QC翻折,得到四边形PQ
C,那么是否存在某时刻t,使四边形PQ
C为菱形?若存在,求出此时菱形的边长;若不存在,说明理由。
在平行四边形 中, 为 的中点,请仅用无刻度的直尺完成下列画图,不写画法,保留画图痕迹.
(1)如图1,在 上找出一点 ,使点 是 的中点;
(2)如图2,在 上找出一点 ,使点 是 的一个三等分点.
(1)先化简,再求值: ,其中 .
(2)解不等式组 ,并把它的解集在数轴上表示出来.
将抛物线 向下平移6个单位长度得到抛物线 ,再将抛物线 向左平移2个单位长度得到抛物线 .
(1)直接写出抛物线 , 的解析式;
(2)如图(1),点 在抛物线 (对称轴 右侧)上,点 在对称轴 上, 是以 为斜边的等腰直角三角形,求点 的坐标;
(3)如图(2),直线 , 为常数)与抛物线 交于 , 两点, 为线段 的中点;直线 与抛物线 交于 , 两点, 为线段 的中点.求证:直线 经过一个定点.
问题背景 如图(1),已知 ,求证: ;
尝试应用 如图(2),在 和 中, , , 与 相交于点 ,点 在 边上, ,求 的值;
拓展创新 如图(3), 是 内一点, , , , ,直接写出 的长.
某公司分别在 , 两城生产同种产品,共100件. 城生产产品的总成本 (万元)与产品数量 (件 之间具有函数关系 .当 时, ;当 时, . 城生产产品的每件成本为70万元.
(1)求 , 的值;
(2)当 , 两城生产这批产品的总成本的和最少时,求 , 两城各生产多少件?
(3)从 城把该产品运往 , 两地的费用分别为 万元 件和3万元 件;从 城把该产品运往 , 两地的费用分别为1万元 件和2万元 件. 地需要90件, 地需要10件,在(2)的条件下,直接写出 , 两城总运费的和的最小值(用含有 的式子表示).