当物体从高空下落时,所受阻力会随物体的速度增大而增大,因此经过下落一段距离后将匀速下落,这个速度称为此物体下落的收尾速度。研究发现,在相同环境条件下,球形物体的收尾速度仅与球的半径和质量有关.下表是某次研究的实验数据
小球编号 |
A |
B |
C |
D |
E |
小球的半径(×10-3m) |
0.5 |
0.5 |
1.5 |
2 |
2.5 |
小球的质量(×l0-6kg) |
2 |
5 |
45 |
40 |
100 |
小球的收尾速度(m/s) |
16 |
40 |
40 |
20 |
32 |
(1)根据表中的数据,求出B球与C球在达到终极速度时所受阻力之比。
(2)根据表中的数据,归纳出球型物体所受阻力f与球的速度大小及球的半径的关系(写出有关表达式、并求出比例系数)。
2010年2月13日在加拿大温哥华冬奥会上,瑞士选手西蒙·阿曼在男子90米跳台滑雪项目上摘取首枚金牌。如图,西蒙·阿曼经过一段加速滑行后从O点水平飞出,落到斜坡上的A点距O点的最远距离为108米。已知O点是斜坡的起点,假设斜坡与水平面的夹角
=37°,西蒙·阿曼的质量m=60 kg。不计空气阻力。(取sin37°=0.60,cos37°=0.80;g=10 m/s2)求在最远的这一跳中
(1)西蒙·阿曼在空中飞行的时间;
(2)西蒙·阿曼离开O点时的速度大小;
(3)西蒙·阿曼落到A点时的动能。
如图所示,正方形导线框ABCD之边长l=10cm,质量m=50g,电阻R=0.1Ω。让线框立在地面上,钩码质量m′=70g,用不可伸长的细线绕过两个定滑轮,连接线框AB边的中点和钩码,线框上方某一高度以上有匀强磁场B=1.0T。当钩码由图示位置被静止释放后,线框即被拉起,上升到AB边进入磁场时就作匀速运动。细绳质量、绳与滑轮间的摩擦和空气阻力均不计,g取10m/s2,求:
(1)线框匀速进入磁场时其中的电流。
(2)线框全部进入磁场所用的时间。
(3)在线框匀速进入磁场的过程中线框产生的电能占钩码损失的机械能的百分比。
(4)线框从图示位置到AB边恰好进入磁场时上升的高度。
如图所示为放置在竖直平面内游戏滑轨的模拟装置图,滑轨由四部分粗细均匀的金属杆组成,其中水平直轨AB与倾斜直轨CD两者的长L均为6m,圆弧形轨道AQC和BPD均光滑,AQC的半径r=1m,AB、CD与两圆弧形轨道相切,O2D、O1C与竖直方向的夹角θ均为37°。现有一质量m=1kg的小球穿在滑轨上,以30J的初动能Ek0从B点开始水平向右运动,小球与两段直轨道间的动摩擦因素μ均为1/6,设小球经过轨道连接处无能量损失。(g=10m/s2,sin37°=0.6,cos37°=0.8)求:
(1)小球第二次到达A点时的动能。
(2)小球在CD段上运动的总路程。
如图所示,某水银气压计的玻璃管顶端高出水银槽液面1m,因上部混有少量的空气使读数不准,当气温为27℃时标准气压计读数为76cmHg,该气压计读数为70cmHg,求:
(1)若在气温为27℃时,用该气压计测得的气压读数为64cmHg,则实际气压应为多少cmHg?
(2)若在气温为7℃时,用该气压计测得的气压读数为68cmHg,则实际气压应为多少cmHg?
“神舟五号”返回地球,穿越大气层后,在一定的高度打开阻力降落伞进一步减速下降,这一过程中若返回舱所受的空气阻力与速度的平方成正比(设比例系数为k),所受空气浮力恒定不变,且认为返回舱竖直降落。从某时刻开始计时,返回舱运动的v~t图像如图中的AD曲线所示,图中AB是曲线在A点的切线,切线交于横轴上一点B,其坐标为(6,0),CD是曲线AD的渐近线,假如返回舱的总质量M=400kg,g取10m/s2,试问:
(1)开始计时时返回舱的加速度多大?
(2)在这一阶段返回舱所受的浮力多大?(保留到整数)