.(本小题满分16分)
已知椭圆上的一动点
到右焦点的最短距离为
,且右焦点到右准线的距离等于短半轴的长.(1)求椭圆
的方程;
(2)设,
是椭圆
上关于
轴对称的任意两个不同的点,连结
交椭圆
于另一点
,证明直线
与
轴相交于定点
;
(3)在(2)的条件下,过点的直线与椭圆
交于
两点,求
的取值
范围.
已知数列、
满足:
,
,
。
(Ⅰ)求数列的通项公式;
(Ⅱ)若,求数列{
}的前n项和
在如图所示的几何体中,四边形ABCD为矩形,AB=2BC=4,BF=CF=AE=DE,EF=2,EF//AB,AF⊥CF。
(Ⅰ)若G为FC的中点,证明:AF//平面BDG;
(Ⅱ)求平面ABF与平面BCF夹角的余弦值。
在中,
分别为角
的对边,且
(Ⅰ)求;
(Ⅱ)若,点
是线段
中点,且
,若角
大于
,求
的面积.
已知函数
(Ⅰ)求函数y = f(x)的单调递增区间;
(Ⅱ)当x ∈ [0,] 时,函数 y = f(x)的最小值为
,试确定常数a的值.
已知等差数列满足:
,
,其中
为数列
的前n项和.
(Ⅰ)求数列的通项公式;
(Ⅱ)若,且
成等比数列,求
的值。