如图所示,一质量为m、电荷量为+q、重力不计的带电粒子,从A板的S点由静止开始释放,经A、B加速电场加速后,穿过中间偏转电场,再进人右侧匀强磁场区域.已知AB间的电压为U,MN极板间的电压为2U,MN两板间的距离和板长均为L,磁场垂直纸面向里、磁感应强度为B、有理想边界.求:
(1) 带电粒子离幵B板时速度V0的大小;
(2) 带电粒子离开偏转电场时速度V的大小与方向;
(3) 要使带电粒子最终垂直磁场右边界射出磁场,磁场的宽度d多大?
如图所示,均可视为质点的三个物体A、B、C穿在竖直固定的光滑绝缘细线上,A与B紧靠在一起(但不粘连),C紧贴着绝缘地板,质量分别为MA=2.32kg,MB=0.20kg,MC=2.00kg,其中A不带电,B、C的带电量分别为qB= +4.0×10-5c,qC =+7.0×10-5c,且电量都保持不变,开始时三个物体均静止。现给物体A施加一个竖直向上的力F,若使A由静止开始向上作加速度大小为a=4.0m/s2的匀加速直线运动,则开始需给物体A施加一个竖直向上的变力F,经时间t后,F变为恒力。已知g=10m/s2,静电力恒量k=9×109N·m2/c2,求:
(1)静止时B与C之间的距离;
(2)时间t的大小;
(3)在时间t内,若变力F做的功WF=53.36J,则B所受的电场力对B做的功为多大?
如图所示,长为L的细绳上端系一质量不计的环,环套在光滑水平杆上,在细线的下端吊一个质量为m的铁球(可视作质点),球离地的高度h=L。现让环与球一起以的速度向右运动,在A处环被挡住后立即停止。已知A离右墙的水平距离也为L,当地的重力加速度为
,不计空气阻力。求:
(1)在环被挡住立即停止时绳对小球的拉力大小;
(2)若在环被挡住后,细线突然断裂,则在以后的运动过程中,球的第一次碰撞点离墙角B点的距离是多少?
如图12-18所示是一种测量通电螺线管中磁场的装置,把一个很小的测量线圈A放在待测处,线圈与测量电量的冲击电流计G串联,当用双刀双掷开关S使螺线管的电流反向时,测量线圈中就产生感应电动势,从而引起电荷的迁移,由表G测出电量Q,就可以算出线圈所在处的磁感应强度B。已知测量线圈共有N匝,直径为d,它和表G串联电路的总电阻为R,则被测处的磁感强度B为多大?
已知某一区域的地下埋有一根与地表面平行的直线电缆,电缆中通有变化的电流,在其周围有变化的磁场,因此可以通过在地面上测量闭合试探小线圈中的感应电动势来探测电缆的确切位置、走向和深度。当线圈平面平行地面测量时,在地面上a、c两处测得试探线圈中的电动势为零,b、d两处线圈中的电动势不为零;当线圈平面与地面成30°夹角时,在b、d两处测得试探线圈中的电动势为零。经过测量发现,a、b、c、d恰好位于边长为L=1m的正方形的四个顶角上,如图12-15所示。据此可以判定:地下电缆在哪两点连线的正下方?并求出地下电缆离地表面的深度h。
如图12-19所示,磁场的方向垂直于xy平面向里。磁感强度B沿y方向没有变化,沿x方向均匀增加,每经过1cm增加量为1.0×10-4T,即。有一个长L=20cm,宽h=10cm的不变形的矩形金属线圈,以v=20cm/s的速度沿x方向运动。问:
(1)线圈中感应电动势E是多少?
(2)如果线圈电阻R=0.02Ω,线圈消耗的电功率是多少?
(3)为保持线圈的匀速运动,需要多大外力?机械功率是多少?