如图,在中,
点
是
边上的动点(点
与点
不重合),过动点
作
交
于点
(1)若与
相似,则
是多少度?
(2)试问:当等于多少时,
的面积最大?最大面积是多少?
(3)若以线段为直径的圆和以线段
为直径的圆相外切,
求线段的长.
如图,已知△ABC,请用尺规过点A作一条直线,使其将△ABC分成面积相等的两部分.(保留作图痕迹,不写作法)
先化简,再求值:[(x-y)2-(x+y)(x-y)]÷2yx,其中x=3,y=1.5.
(1)计算:(2x2y)(-xy2z)3(3x2)
(2)因式分解:-8ax2+16axy-8ay2
(3)因式分解:(x2-3)2-4x2.
解方程:
(1)(x-2)2-5=0;
(2)2x2-8x+3=0.
如图,在直角坐标系中,抛物线经过点A(0,4),B(1,0),C(5,0),其对称轴与x轴相交于点M.
(1)求抛物线的解析式和对称轴;
(2)在抛物线的对称轴上是否存在一点P,使△PAB的周长最小?若存在,请求出点P的坐标;若不存在,请说明理由;
(3)连接AC,在直线AC的下方的抛物线上,是否存在一点N,使△NAC的面积最大?若存在,请求出点N的坐标;若不存在,请说明理由.