游客
题文

桌生产厂家研究发现,倾斜12°~24°的桌面有利于学生保持躯体自然姿势.根据这一研究,厂家决定将水平桌面做成可调节角度的桌面.新桌面的设计图如图1,AB可绕点A旋转,在点C处安装一根可旋转的支撑臂CDAC=30cm.

(1)如图2,当∠BAC=24°时,CDAB,求支撑臂CD的长;
(2)如图3,在 (1)中 CD的长不变的情况下,当∠BAC=12°时,求AD的长.(结果保留根号)
(参考数据: sin24°≈0.40,cos24°≈0.91,tan24°≈0.46, sin12°≈0.20)

科目 数学   题型 解答题   难度 未知
登录免费查看答案和解析
相关试题

如图,△ABC中,AD平分∠BAC,CD∥AB交AD于D.试判断△ADC的形状,并说明你的理由.

如图,在△ABC中,AB=AC,∠A=20゜,在AB、AC上分别取点E、D,使∠CBD=60°,∠BCE=50°,求∠AED的度数.

已知:如图,在△ABC中,∠C=90°,AC=BC=4,点M是边AC上一动点(与点A、C不重合),点N在边CB的延长线上,且AM=BN,连接MN交边AB于点P.

(1)求证:MP=NP;
(2)若设AM=x,BP=y,求y与x之间的函数关系式,并写出它的定义域;
(3)当△BPN是等腰三角形时,求AM的长.

如图,已知点B、D、E、C在同一直线上,AB=AC,AD=AE.
求证:BD=CE
(1)根据下面说理步骤填空
证法一:作AM⊥BC,垂足为M.
∵AB=AC() AM⊥BC( 辅助线 )
∴BM=CM(
同理DM=EM.
∴BM﹣DM=CM﹣EM(
∴BD=CE(线段和、差的意义)
(2)根据下面证法二的辅助线完成后面的说理步骤.
证法二:作△ABC的中线AM.

(1)如图1,点B,D在射线AM上,点C,E在射线AN上,且AB=BC=CD=DE,已知∠EDM=84°,求∠A的度数;

(2)如图2,点B、F、D在射线AM上,点G、C、E在射线AN上,且AB=BC=CD=DE=EF=FG=GA,求∠A的度数.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号