某中学将100名高一新生分成水平相同的甲、乙两个“平行班”,每班50人.陈老师采用A、B两种不同的教学方式分别在甲、乙两个班级进行教改实验.为了解教学效果,期末考试后,陈老师对甲、乙两个班级的学生成绩进行统计分析,画出频率分布直方图(如右图).记成绩不低于90分者为“成绩优秀”.
(I)从乙班随机抽取2名学生的成绩,记“成绩优秀”的个数为,求
的分布列和数学期望;
(II)根据频率分布直方图填写下面列联表,并判断是否有95%的把握认为“成绩优秀”与教学方式有关。
(本题10分) 为了让学生了解环保知识,增强环保意识,某中学举行了一次“环保知识竞赛”,共有900名学生参加了这次竞赛.为了解本次竞赛成绩情况,从中抽取了部分学生的成绩(得分均为整数,满分为100分)进行统计.请你根据尚未完成并有局部污损的频率分布表和频率分布直方图,解答下列问题:
分组 |
频数 |
频率 |
50.5~60.5 |
4 |
0.08 |
![]() |
0.16 |
|
70.5~80.5 |
10 |
|
80.5~90.5 |
16 |
0.32 |
90.5~100.5 |
||
合计 |
50 |
(Ⅰ)填充频率分布表的空格(将答案直接填在表格内);
(Ⅱ)补全频率分布直方图;
(Ⅲ)学校决定成绩在75.5~85.5分的学生为二等奖,
问该校获得二等奖的学生约为多少人?
在数列中,
,
,令
,
(1)求的值 (2)求
的前
项和.(10分)
(本小题共14分)
已知数列中,
,设
.
(Ⅰ)试写出数列的前三项;
(Ⅱ)求证:数列是等比数列,并求数列
的通项公式
;
(Ⅲ)设的前
项和为
,求证:
.
(本小题共14分)
设函数.
(Ⅰ)求函数的定义域及其导数
;
(Ⅱ)当时,求函数
的单调区间;
(Ⅲ)当时,令
,若
在
上的最大值为
,求实数
的值.
(本小题共13分)
在平面直角坐标系中,已知圆
的圆心为
,过点
且斜率为
的直线
与圆
相交于不同的两点
.
(Ⅰ)求圆的面积;
(Ⅱ)求的取值范围;
(Ⅲ)是否存在常数,使得向量
与
共线?如果存在,求
的值;如果不存在,请说
明理由.