(本小题满分9分)
如图一次函数(
)的图象分别交
轴、
轴于点
,与反比例函数
图象在第二象限交于点
,
轴于点
,OA=OD.
⑴求m的值和一次函数的表达式;
⑵在轴上求点
,使△CAP为等腰三角形(求出所有符合条件的点).
如图,已知 是 的直径, 为 上一点, 的角平分线交 于点 , 在直线 上,且 ,垂足为 ,连接 、 .
(1)求证: 是 的切线;
(2)若 , 的半径为3,求 的长.
如图,已知 中, 是 的中点,过点 作 交 于点 ,过点 作 交 于点 ,连接 、 .
(1)求证:四边形 是菱形;
(2)若 , , ,求 的长.
已知关于 的一元二次方程 有两个不相等的实数根.
(1)求实数 的取值范围;
(2)若该方程的两个根都是符号相同的整数,求整数 的值.
为庆祝中国共产党成立100周年,某校举行党史知识竞赛活动,赛后随机抽取了部分学生的成绩,按得分划分为 、 、 、 四个等级,并绘制了如下不完整的统计表和统计图.
等级 |
成绩 |
人数 |
|
|
15 |
|
|
|
|
|
18 |
|
|
7 |
根据图表信息,回答下列问题:
(1)表中 ;扇形统计图中, 等级所占的百分比是 ; 等级对应的扇形圆心角为 度;若全校共有1800名学生参加了此次知识竞赛活动,请估计成绩为 等级的学生共有 人;
(2)若95分以上的学生有4人,其中甲、乙两人来自同一班级,学校将从这4人中随机选出两人参加市级比赛,请用列表或树状图法求甲、乙两人至少有1人被选中的概率.
如图,抛物线 交 轴于 , 两点,交 轴于点 ,点 为线段 上的动点.
(1)求抛物线的解析式;
(2)求 的最小值;
(3)过点 作 交抛物线的第四象限部分于点 ,连接 , ,记 与 面积分别为 , ,设 ,求点 坐标,使得 最大,并求此最大值.