如图所示,一轻质弹簧两端连接着物体A和物体B,放在光滑的水平面上,水平速度为V0的子弹射中物体A并嵌在其中,已知物体B的质量为mB,物体A的质量是物体B的质量的3/4,子弹的质量是物体B的质量的1/4,求弹簧被压缩到最短时的弹性势能。
如图甲所示,一竖直平面内的轨道由粗糙斜面AD和光滑圆轨道DCE组成,AD与DCE相切于D点,C为圆轨道的最低点,将一小物块置于轨道ADC上离地面高为H处由静止下滑,用力传感器测出其经过C点时对轨道的压力N,改变H的大小,可测出相应的N的大小,N随H的变化关系如图乙折线PQI所示(PQ与QI两直线相连接于Q点),QI反向延长交纵轴于F点(0,5.8N),重力加速度g取10m/s2,求:
(1)小物块的质量m;
(2)小物块与斜面AD间的动摩擦因数μ。
如图所示,轻杆AB长l,两端各连接A、B小球,质量均为m,杆可以绕距B端l/3处的O轴在竖直平面内自由转动。轻杆由水平位置从静止开始转到竖直方向,求:
(1)此过程中杆对A球做的功是多少。
(2)在竖直方向时转轴O受的作用力大小及方向.(重力加速度为g,不计一切阻力)
(10分) 如图所示,传送带与水平面的夹角=30°,皮带在电动机的带动下,始终保持顺时针运行,速率为v0=2m/s。现把一质量m=10kg的工件(可看做质点)轻轻放在皮带的底端,经时间t=1.9s,工件被传送到h=1.5m的高处,取g=10m/s2。求:(1)工件与皮带间的动摩擦因数;(2)电动机由于传送工件多消耗的电能。
伽利略”木星探测器,从1989年10月进入太空起,历经6年,行程37亿千米,终于到达木星周围。此后在t秒内绕木星运行N圈后,对木星及其卫星进行考察,最后坠入木星大气层烧毁。设这N圈都是绕木星在同一个圆周上运行,其运行速率为V,探测器上的照相机正对木星拍摄到整个木星时的视角为θ(如图所示),设木星为一球体。求:
(1)木星探测器在上述圆形轨道上运行时的轨道半径;
(2)若人类能在木星表面着陆,至少以多大的速度将物体从其表面水平抛出,才不至于使物体再落回木星表面。
一客运列车匀速行驶,其车轮在轨道间的接缝处会产生周期性的撞击。坐在该客车中的某旅客测得从第1次到第16次撞击声之间的时间间隔为10.0 s。在相邻的平行车道上有一列货车,当该旅客经过货车车尾时,货车恰好从静止开始以恒定加速度沿客车行进方向运动。该旅客在此后的20.0 s内,看到恰好有30节货车车厢被他连续超过。已知每根轨道的长度为25.0 m,每节货车车厢的长度为16.0 m,货车车厢间距忽略不计。求
(1)客车运行的速度大小;(2)货车运行加速度的大小。