如图所示,两块平行金属极板MN水平放置,板长L =" 1" m.间距d = m,两金属板间电压UMN = 1×104 V;在平行金属板右侧依次存在ABC和FGH两个全等的正三角形区域,正三角形ABC内存在垂直纸面向里的匀强磁场B1,三角形的上顶点A与上金属板M平齐,BC边与金属板平行,AB边的中点P恰好在下金属板N的右端点;正三角形FGH内存在垂直纸面向外的匀强磁场B2,已知A、F、G处于同一直线上.B、C、H也处于同一直线上.AF两点距离为
m。现从平行金属极板MN左端沿中心轴线方向入射一个重力不计的带电粒子,粒子质量m = 3×10-10 kg,带电量q = +1×10-4 C,初速度v0 = 1×105 m/s。
(1)求带电粒子从电场中射出时的速度v的大小和方向
(2)若带电粒子进入中间三角形区域后垂直打在AC边上,求该区域的磁感应强度B1
(3)若要使带电粒子由FH边界进入FGH区域并能再次回到FH界面,求B2应满足的条件。
如图,静止于A处的离子,经电压为U的加速电场加速后沿图中圆弧虚线通过静电分析器,从P点垂直CN进入矩形区域的有界匀强电场,电场方向水平向左。静电分析器通道内有均匀辐向分布的电场,已知圆弧所在处场强为E0,方向如图所示;离子质量为m、电荷量为q;、
,离子重力不计。
(1)求圆弧虚线对应的半径R的大小;
(2)若离子恰好能打在NQ的中点上,求矩形区域QNCD内匀强电场场强E的值;
(3)若撤去矩形区域QNCD内的匀强电场,换为垂直纸面向里的匀强磁场,要求离子能最终打在QN上,
求磁场磁感应强度B的取值范围。
如图所示,两根相距为d的足够长的平行金属导轨位于水平xOy平面内,左端接有阻值为R的电阻,其他部分的电阻均不计。在x>0的一侧存在垂直xOy平面且方向竖直向下的磁场,磁感强度大小按B=kx规律变化(其中k是一大于零的常数)。一根质量为m的金属杆垂直跨搁在光滑的金属导轨上,两者接触良好。当t=0时直杆位于x=0处,其速度大小为v0,方向沿x轴正方向,在此后的过程中,始终有一个方向向左的变力F作用于金属杆,使金属杆的加速度大小恒为a,加速度方向一直沿x轴的负方向.求:
(1)金属杆向右运动至t0时刻时所在位置处的磁感应强度B的大小。
(2)闭合回路中感应电流持续的时间有多长?
(3)当金属杆的速度为时,闭合回路的感应电动势多大?此时作用于金属杆的外力F多大?
滑草是一项前卫运动,和滑雪一样能给运动者带来动感和刺激。如图所示,人坐在滑草车上从斜坡的高处A点由静止开始自由滑下,滑到斜坡的底端B点后沿水平的滑道再滑行一段距离到C点停下来。若某人和滑草车的总质量m=60kg,滑草车与斜坡滑道、滑草车与水平滑道间的动摩擦因数相等,μ=0.2,斜坡的倾角θ=15º。整个运动过程中,除滑草车与滑道之间的摩擦外,不计其它方面的能量损失,重力加速度g取10m/s2。(sin15º≈0.26,cos15º≈0.97)求:
(1)人与滑草车在斜坡上滑动时的加速度大小为多少?
(2)若斜坡滑下的距离AB长为L=40m,则人与滑草车在水平滑道上滑行的最大距离为多少?
如图所示,在水平轨道右侧安放半径为R的竖直圆槽形光滑轨道,水平轨道的PQ段铺设特殊材料,调节其初始长度为l.水平轨道左侧有一轻质弹簧左端固定,弹簧处于自然伸长状态.小物块A(可视为质点)从轨道右侧以初速度v0冲上轨道,通过圆形轨道、水平轨道后压缩弹簧并被弹簧以原速率弹回,经水平轨道返回圆形轨道.已知R=0.2m,l=1.0m,,物块A质量为m=1kg,与PQ段间的动摩擦因数为μ=0.2,轨道其他部分摩擦不计,取g=10m/s2。求:
(1)物块A与弹簧刚接触时的速度大小.
(2)物块A被弹簧以原速率弹回返回到圆形轨道的高度.
(3)调节PQ段的长度l,A仍以v0从轨道右侧冲上轨道,当l满足什么条件时,A物块能第一次返回圆形轨道且能沿轨道运动而不会脱离轨道。
如图所示,质量为m=1kg的小球用线长l=1m的细线拴住,细绳上端固定在O点,当小球从图示M点释放后摆到悬点O的正下方N点时,细线恰好被拉断,此后小球刚好能无碰撞地从置于地面上倾角为45º的斜面滑下,已知斜面高度 h=0.4m,斜面左端离O点正下方的P点水平距离S=0.4m,不计空气阻力,求:
(1)N点距离地面的高度H
(2)细绳能承受的最大拉力