如图,矩形ABCD,AB=6cm,AD=2cm,点P以2cm/s的速度从顶点A出发沿折线A-B-C向点C运动,同时点Q以lcm/s的速度从顶点C出发向点D运动,当其中一个动点到达末端停止运动时,另一点也停止运动. (1)问两动点运动几秒,使四边形PBCQ的面积是矩形ABCD面积的
;
(2)问两动点经过多长时间使得点P与点Q之间的距离为?若存在,
求出运动所需的时间;若不存在,请说明理由.
如图所示,一个60°角的三角形纸片,剪去这个60°角后,得到一个四边形,则∠1+∠2的度数为( )
A.120° | B.180° | C.240° | D.300° |
正十边形的每个外角等于( )
A.18° | B.36° | C.45° | D.60° |
勾股定理是几何中的一个重要定理.在我国古算书《周髀算经》中就有“若勾三,股四,则弦五”的记载.如图1是由边长相等的小正方形和直角三角形构成的,可以用其面积关系验证勾股定理.图2是由图1放入矩形内得到的,∠BAC=90°,AB=3,AC=4,点D,E,F,G,H,I都在矩形KLMJ的边上,则矩形KLMJ的面积为( )
A.90 | B.100 | C.110 | D.121 |
如图,直线l上有三个正方形a、b、c,若a、c的面积分别为5和11,则b的面积为( )
A.4 | B.6 | C.16 | D.55 |
如图,将等腰直角三角形沿虚线剪去顶角后,∠1+∠2=( )
A.225° | B.235° |
C.270° | D.与虚线的位置有关 |