如图,椭圆:
的右焦点
与抛物线
的焦点重合,过
作与
轴垂直的直线
与椭圆交于S、T两点,与抛物线交于C、D两点,且
.
(Ⅰ)求椭圆的方程;
(Ⅱ)若过点的直线与椭圆
相交于两点
,设
为椭圆
上一点,且满足
(
为坐标原点),当
时,求实数
的取值范围.
(本小题满分10分)
在极坐标系中,点坐标是
,曲线
的方程为
;以极点为坐标原点,极轴为
轴的正半轴建立平面直角坐标系,斜率是
的直线
经过点
.
(1)写出直线的参数方程和曲线
的直角坐标方程;
(2)求证直线和曲线
相交于两点
、
,并求
的值.
(本小题满分10分)
如图,、
是圆的两条平行弦,
∥
,
交
于
交圆于
,过
点的切线交
的延长线于
,
,
.
(1)求的长;
(2)求证:.
(本小题满分12分)已知函数.(
)
(1)若函数有三个零点
,且
,
,求函数
的单调区间;
(2)若,
,试问:导函数
在区间(0,2)内是否有零点,并说明理由.
(3)在(Ⅱ)的条件下,若导函数的两个零点之间的距离不小于
,求
的取值范围.
(本小题满分12分)已知椭圆:
(
)的离心率为
,过右焦点
且斜率为1的直线交椭圆
于
两点,
为弦
的中点。
(1)求直线(
为坐标原点)的斜率
;
(2)设椭圆
上任意一点,且
,求
的最大值和最小值.
(本小题满分12分)已知直三棱柱中,△
为等腰直角三角形,∠
=
,且
=
,
、
、
分别为
、
、
的中点.
(1)求证:∥平面
;
(2)求证:⊥平面
;
(3)求三棱锥的体积.