如图,甲船以每小时海里的速度向正北方向航行,乙船按固定方向匀速直线航行,当甲船位于
处时,乙船位于甲船的北偏西
的方向
处,此时两船相距20海里.当甲船航行20分钟到达
处时,乙船航行到甲船的北偏西
方向的
处,此时两船相距
海里,问乙船每小时航行多少海里?
(本小题满分12分)
已知椭圆:
,
分别为左,右焦点,离心率为
,点
在椭圆
上,
,
,过
与坐标轴不垂直的直线
交椭圆于
两点.
(Ⅰ)求椭圆的方程;
(Ⅱ)在线段上是否存在点
,使得以线段
为邻边的四边形是菱形?若存在,求出实数
的取值范围;若不存在,说明理由.
((本小题满分12分)
改革开放以来,我国高等教育事业有了突飞猛进的发展,有人记录了某村到
年十年间每年考入大学的人数.为方便计算,
年编号为
,
年编号为
,…,
年编号为
.数据如下:
(Ⅰ)从这年中随机抽取两年,求考入大学人数至少有
年多于
人的概率;
(Ⅱ)根据前年的数据,利用最小二乘法求出
关于
的回归方程
,并计算第
年的估计值和实际值之间的差的绝对值.
(本小题满分12分)
已知三棱柱,底面三角形
为正三角形,侧棱
底面
,
,
为
的中点,
为
中点.
(Ⅰ) 求证:直线平面
;
(Ⅱ)求平面和平面
所成的锐二面角的余弦值.
(本小题满分12分)
已知函数.
(Ⅰ) 求函数的单调递增区间;
(Ⅱ) 已知中,角
所对的边长分别为
,若
,
,求
的面积
.
设是函数
的两个极值点,且
①求证:
;②求证:
;③若函数
,求证:当
且x1<0时,
.