如图所示,两根足够长的直金属导轨MN、PQ平行放置在倾角为的绝缘斜面上,两导轨间距为L。M、P两点间接有阻值为R的电阻。一根质量为m的均匀直金属杆ab放在两导轨上,并与导轨垂直。整套装置处于匀强磁场中,磁场方向垂直于斜面向上。导轨和金属杆的电阻可忽略。让金属杆ab沿导轨由静止开始下滑,经过足够长的时间后,金属杆达到最大速度vm,在这个过程中,电阻R上产生的热量为Q。导轨和金属杆接触良好,它们之间的动摩擦因数为μ且μ< tanθ。已知重力加速度为g。
(1)求磁感应强度的大小;
(2)金属杆在加速下滑过程中,当速度达到v1(v1<vm)时,求此时杆的加速度大小;
(3)求金属杆从静止开始至达到最大速度的过程中下降的高度。
如图所示,质量mB=2kg的平板车B上表面水平,开始时静止在光滑水平面上,在平板车左端静止着一块质量mA=2kg的物块A,一颗质量m0=0.01kg的子弹以v0=600m/s的水平初速度瞬间射穿A后,速度变为v=200m/s。已知A与B之间的动摩擦因数不为零,且A与B最终达到相对静止,则整个过程中A、B组成的系统因摩擦产生的热量为多少?
在真空中有一正方体玻璃砖,其截面如图所示,已知它的边长为d,玻璃砖的折射率n =,在AB面上方有一单色点光源S,从S发出的光线SP以60°入射角从AB面中点射入,从侧面AD射出,若光从光源S到AB面上P点的传播时间和它在玻璃砖中传播的时间相等.求点光源S到P点的距离
如图所示,在无限长的水平边界AB和CD间有一匀强电场,同时在AEFC、BEFD区域分别存在水平向里和向外的匀强磁场,磁感应强度大小相同,EF为左右磁场的分界线。AB边界上的P点到边界EF的距离为。一带正电微粒从P点的正上方的O点由静止释放,从P点垂直AB边界进入电、磁场区域,且恰好不从AB边界飞出电、磁场。已知微粒在电、磁场中的运动轨迹为圆弧,重力加速度大小为g,电场强度大小E(E未知)和磁感应强度大小B(B未知)满足E/B=
,
不考虑空气阻力,求:
(1)O点距离P点的高度h多大;
(2)若微粒从O点以v0=水平向左平抛,且恰好垂直下边界CD射出电、磁场,则微粒在电、磁场中运动的时间t多长?
某同学近日做了这样一个实验,将一个小铁块(可看成质点)以一定的初速度,沿倾角可在0—90°之间任意调整的木板向上滑动,设它沿木板向上能达到的最大位移为x, 若木板倾角不同时对应的最大位移x与木板倾角的关系如图所示。g取10m/s2。求:
(1)小铁块初速度的大小v0以及小铁块与木板间的动摩擦因数μ是多少?
(2)当α=60°时,小铁块达到最高点后,又回到出发点,物体速度将变为多大?
如图所示,绝缘轨道由弧形轨道和半径为R=0.16m的圆形轨道、水平轨道连接而成,处于竖直面内的匀强电场中,PQ左右两侧电场方向相反,其中左侧方向竖直向下,场强大小均为103V/m,不计一切摩擦。质量为m=0.1kg的带正电小球可看作质点)从弧形轨道某处由静止释放,恰好能通过圆形轨道最高点,小球带电荷量q="1." 0×10-3C,g取10m/s2。求:
(1)小球释放点的高度h
(2)若PQ右侧某一区域存在垂直纸面向里的匀强磁场(图中未画出),磁感应强度B=4×102T,小球通过圆形轨道后沿水平轨道运动到P点进入磁场,从竖直边界MN上的A点离开时速度方向与电场方向成30o,已知PQ、MN边界相距L=0.7m,求:
①小球从P到A经历的时间
②若满足条件的磁场区域为一矩形,求最小的矩形面积。