如图所示,两根足够长的直金属导轨MN、PQ平行放置在倾角为的绝缘斜面上,两导轨间距为L。M、P两点间接有阻值为R的电阻。一根质量为m的均匀直金属杆ab放在两导轨上,并与导轨垂直。整套装置处于匀强磁场中,磁场方向垂直于斜面向上。导轨和金属杆的电阻可忽略。让金属杆ab沿导轨由静止开始下滑,经过足够长的时间后,金属杆达到最大速度vm,在这个过程中,电阻R上产生的热量为Q。导轨和金属杆接触良好,它们之间的动摩擦因数为μ且μ< tanθ。已知重力加速度为g。
(1)求磁感应强度的大小;
(2)金属杆在加速下滑过程中,当速度达到v1(v1<vm)时,求此时杆的加速度大小;
(3)求金属杆从静止开始至达到最大速度的过程中下降的高度。
如图12所示.空间有一宽为2L的匀强磁场区域,磁感应强度为B,方向垂直纸面向外.abcd是由均匀电阻丝做成的边长为L的正方形线框,总电阻值为R。线框以垂直磁场边界的速度v匀速通过磁场区域。在运动过程中,线框ab、cd两边始终与磁场边界平行。设线框刚进入磁场的位置x=0,x轴沿水平方向向右。求:
(1)cd边刚进入磁场时,ab两端的电势差,并指明哪端电势高;
(2)线框穿过磁场的过程中,线框中产生的焦耳热;
(3)在答题卷上的图中,画出ab两端电势差Uab随距离变化的图象。其中U0 = BLv。
发电机转子是匝数n=100,边长L=20cm的正方形线圈,其置于磁感应强度B=0.5T的匀强磁场中,绕着垂直磁场方向的轴以ω=100π(rad/s)的角速度转动,当转到线圈平面与磁场方向垂直时开始计时.线圈的电阻r=1Ω,外电路电阻R=99Ω.试求:
(1)交变电流瞬时值表达式;
(2)外电阻上消耗的功率 (π2=10);
(3)从计时开始,线圈转过过程中,通过外电阻的电荷量是多少?
有一弹簧振子在水平方向上的B、C之间做简谐运动,已知B、C之间的距离为20cm,振子在2s内完成了10次全振动,若从振子经过平衡位置时开始计时,经过四分之一周期振子有正向的最大加速度。
(1)写出振子的振幅和周期;
(2)作出该振子的位移—时间图象;
(3)写出振子的振动方程。
如图12所示,一根长0.1m的细线,一端系着一个质量为0.18Kg的小球,拉住线的另一端,使球在光滑的水平桌面上作匀速圆周运动,使小球的转速很缓慢地增加,当小球的转速增加到开始时转速的3倍时,细线断开,线断开前的瞬间线的拉力比开始时大40N。
求:(1)线断开前的瞬间,线的拉力大小;
(2)线断开的瞬间,小球运动的线速度;
(3)如果小球离开桌面时,速度方向与桌边的夹角为60°,桌面高出地面0.8m,求小球飞出后的落地点距桌边的水平距离。
“嫦娥工程”计划在第二步向月球发射一个软着陆器,在着陆器附近进行现场勘测。已知地球的质量为月球质量的81倍,地球的半径为月球半径的4倍,地球表面的重力加速度为=10
,假设将来测得着陆器撞击月球表面后竖直向上弹起,2s后落回月球表面.求它弹起时的初速度
(不考虑地球和月球的自转).