某校高一年级开设研究性学习课程,()班和(
)班报名参加的人数分别是
和
.现用分层抽样的方法,从中抽取若干名学生组成研究性学习小组,已知从(
)班抽取了
名同学.
(Ⅰ)求研究性学习小组的人数;
(Ⅱ)规划在研究性学习的中、后期各安排次交流活动,每次随机抽取小组中
名同学发言.求
次发言的学生恰好来自不同班级的概率.
如图,在四边形ABCD中,已知AD⊥CD,AD=10,AB=14,∠BDA=60°,∠BCD="135°" 求BC的长.
已知等差数列{an}的前n项和为Sn,且满足a2=4,a3+a4=17.
(1)求{an}的通项公式;
(2)设bn=2an+2,证明数列{bn}是等比数列并求其前n项和Tn.
已知函数 满足下列关系式:(i)对于任意的 ,恒有 ;(ii) .
求证:
(1)
=0;
(2)
为奇函数;
(3)
是以
为周期的周期函数.
已知函数
,且
.
(1)求常数a的值及
的最小值;
(2)当
时,求
的单调增区间.
如图,半径为1的扇形中心角为
,一个矩形的一边在扇形的半径上,求此矩形的最大面积.