如图,已知的半径是1,点C在直径AB的延长线上,
, 点P是
上半圆上的动点, 以
为边作等边三角形
,且点D与圆心分别在
的两侧.
(Ⅰ) 若,试将四边形
的面积
表示成
的函数;
(Ⅱ) 求四边形的面积的最大值.
如图,直线与椭圆
交于
两点,记
的面积为
,
是坐标原点.
(Ⅰ)当时,求
的最大值;
(Ⅱ)当时,求直线
的方程.
直线过点
,且与椭圆
交于
两点,
是坐标原点.
(Ⅰ)若点是弦
的中点,求直线
的方程;
(Ⅱ)若直线过椭圆的左焦点,求数量积
的值.
如图,已知抛物线:
,其上一点
到其焦点
的距离为
,过焦点
的直线
与抛物线
交于
左、右两点.
(Ⅰ)求抛物线的标准方程;
(Ⅱ)若,求直线
的方程.
已知圆的半径为
,圆心
在直线
上.
(Ⅰ)若圆被直线
截得的弦长为
,求圆
的标准方程;
(Ⅱ)设点,若圆
上总存在两个点到点
的距离为
,求圆心
的横坐标
的取值范围.
已知的三个顶点的坐标为
.
(Ⅰ)求边上的高所在直线的方程;
(Ⅱ)若直线与
平行,且在
轴上的截距比在
轴上的截距大
,求直线
与两条坐标轴围成的三角形的周长.