设S为实数集R的非空子集,若对任意x,y∈S,都有x+y,x-y,xy∈S,则称S为封闭集,下列命题:
①集合S={a+b|a,b为整数}为封闭集;
②若S为封闭集,则一定有0∈S;
③封闭集一定是无限集;
④若S为封闭集,则满足S⊆T⊆R的任意集合T也是封闭集。
其中的真命题是 (写出所有真命题的序号).
已知集合A={1,2},B={a,a 2+3}.若A∩B={1},则实数a的值为________.
如图,圆形纸片的圆心为
,半径为
,该纸片上的等边三角形ABC的中心为O。D、E、F为圆O上的点,
,
,
分别是以BC,CA,AB为底边的等腰三角形。沿虚线剪开后,分别以BC,CA,AB为折痕折起
,
,
,使得D、E、F重合,得到三棱锥。当
的边长变化时,所得三棱锥体积(单位:
)的最大值为_________.
已知双曲线C:
的右顶点为A,以A为圆心,b为半径做圆A,圆A与双曲线C的一条渐近线交于M、N两点。若
,则C的离心率为_________ .
设x,y满足约束条件
,则
的最小值为_________ .
已知向量a,b的夹角为60°,
,
,则
_________ .