(本小题满分12分)
设函数,曲线
在点(2,
(2))处的切线方程为
(Ⅰ)求的解析式;
(Ⅱ)若对一切
恒成立,求
的取值范围;
(Ⅲ)证明:曲线上任一点处的切线与直线
和直线
所围成的三角形面积为一值,并求此定值。
已知两个动点、
和一个定点
均在抛物线
上(
、
与
不重合). 设
为抛物线的焦点,
为其对称轴上一点,若
,且
、
、
成等差数列.
(Ⅰ)求的坐标(可用
、
和
表示);
(Ⅱ)若,
,
、
两点在抛物线
的准线上的射影分别为
、
,求四边形
面积的取值范围.
如图,四棱锥中,平面
平面
,
,
,
,且
,
.
(Ⅰ)求证:平面
;
(Ⅱ)求直线和平面
所成角的正弦值.
设数列满足:
.
(Ⅰ)求证:数列是等比数列;
(Ⅱ)若,且对任意的正整数
,都有
,求实数
的取值范围.
(1)选修4—4:坐标系与参数方程
已知直线的极坐标方程是
.以极点为平面直角坐标系的原点,极轴为
轴的正半轴,建立平面直角坐标系,曲线
的参数方程是
(
为参数),直线
和曲线
相交于
两点,求线段
的长.
(2)选修4—5:不等式选讲
已知正实数满足
,求证:
.
已知对任意的实数,直线
都不与曲线
相切.
(1)求实数的取值范围;
(2)当时,函数
的图象上是否存在一点
,使得点
到
轴的距离不小于
.试证明你的结论.