如图所示,两根足够长、电阻不计的光滑平行金属导轨相距为L=1m,导轨平面与水平面成
=30°角,上端连接
的电阻.质量为m=0.2kg、阻值
的金属棒ab放在两导轨上,与导轨垂直并接触良好,距离导轨最上端d=4m,整个装置处于匀强磁场中,磁场的方向垂直导轨平面向上.
⑴若磁感应强度B=0.5T,将金属棒释放,求金属棒匀速下滑时电阻R两端的电压;
⑵若磁感应强度的大小与时间成正比,在外力作用下ab棒保持静止,当t=2s时外力恰好为零.求ab棒的热功率;
⑶若磁感应强度随时间变化的规律是
(T),在平行于导轨平面的外力F作用下ab棒保持静止,求一个周期内回路产生的热量.
我国“嫦娥一号”月球探测器在绕月球成功运行之后,为进一步探测月球的详细情况,又发射了一颗绕月球表面飞行的科学试验卫星,假设该卫星绕月球的运动视为圆周运动,并已知月球半径为R,月球表面重力加速度为g,万有引力常量为G,不考虑月球自转的影响.
(1)求该卫星环绕月球运行的第一宇宙速度v1;
(2)若该卫星在没有到达月球表面之前先要在距月球某一高度绕月球做圆周运动进行调姿,且该卫星此时运行周期为T,求该卫星此时的运行半径r;
(3)由题目所给条件,请提出一种估算月球平均密度的方法,并推导出密度表达式.
如图所示,一倾角为θ=37°的光滑斜面固定在地面上,斜面长度s0=3.0m,斜面底端有一垂直于斜面的固定挡板。在斜面顶端由静止释放一质量m=0.10kg的小物块。当小物块与挡板第一次碰撞后,能沿斜面上滑的最大距离s=0.75m。已知小物块第一次与挡板碰撞过程中从接触到离开所用时间为0.10s,重力加速度g取10m/s2,sin37°=0.6,cos37°=0.8。求:
(1)小物块第一次与挡板碰撞前的速度大小;
(2)小物块第一次与挡板撞击过程中损失的机械能;
(3)小物块第一次与挡板撞击过程中受到挡板的平均作用力。
如图所示,用一个平行于斜面向上的恒力将质量m=10.0kg的箱子从斜坡底端由静止推上斜坡,斜坡与水平面的夹角θ=37°,推力的大小F=100N,斜坡长度s=4.8m,木箱底面与斜坡的动摩擦因数μ=0.20。重力加速度g取10m/s2,且已知sin37°=0.60,cos37°=0.80。
求:(1)物体到斜面顶端所用时间;
(2)到顶端时推力的瞬时功率多大。
如图所示,质量为0.78kg的金属块放在水平桌面上,在与水平方向成37°角斜向上、大小为3.0N的拉力F作用下,以4.0m/s的速度向右做匀速直线运动。已知sin37°=0.60,cos37°=0.80,g取10m/s2。
求:(1)金属块与桌面间的动摩擦因数;
(2)如果从某时刻起撤去拉力,则撤去拉力后金属块在桌面上还能滑行多远?
如图所示,空间存在着强度E=
方向竖直向上的匀强电场,在电场内一长为
的绝缘细线,一端固定在O点,一端拴着质量m、电荷量q的小球.现将细线拉直到水平位置,使小球由静止释放,当小球运动最高点时细线受到的拉力恰好达到它能承受的最大值而断裂.求:
(1)小球运动最高点时的速度;
(2)细线能承受的最大拉力;
(3)从断线开始计时,在t=
时刻小球与O点的距离。