某大学对该校参加某项活动的志愿者实施“社会教育实施”学分考核,该大学考核只有合格和优秀两个等次.若某志愿者考核为合格,授予个学分;考核为优秀,授予
个学分.假设该校志愿者甲、乙考核为优秀的概率分别为
、
,乙考核合格且丙考核优秀的概率为
.甲、乙、丙三人考核所得等次相互独立.
(1)求在这次考核中,志愿者甲、乙、丙三人中至少有一名考核为优秀的概率;
(2)记在这次考核中,甲、乙、丙三名志愿者所得学分之和为随机变量,求随机变量
的
分布列和数学期望.
设函数,不等式
的解集为(-1,2)
(1)求的值;
(2)解不等式.
已知函数.
(1)求函数的最小正周期;
(2)求函数在
上的最大值和最小值,并求函数取得最大值和最小值时的自变量
的值.
如图,在平面直角坐标系中,以
轴为始边做两个锐角
,它们的终边分别与单位圆相交于A、B两点,已知A、B的横坐标分别为
(1)求的值; (2)求
的值.
已知椭圆的中心为坐标原点O,焦点在x轴上,过椭圆右焦点F2且斜率为1的直线交椭圆于A、B两点,弦AB的中点为T,OT的斜率为,
(1)求椭圆的离心率;
(2)设Q是椭圆上任意一点,F1为左焦点,求的取值范围;
(3)若M、N是椭圆上关于原点对称的两个点,点P是椭圆上任意一点,当直线PN斜率,试求直线PM的斜率
的范围。
同时投掷两个骰子,计算下列事件的概率:
(1)事件A:两个骰子点数相同;
(2)事件B:两个骰子点数之和是4的倍数;
(3)事件C:两个骰子点数之差是2 。