游客
题文

小王家是新农村建设中涌现出的 “养殖专业户”.他准备购置80只相同规格的网箱,养殖A、B两种淡水鱼(两种鱼不能混养).计划用于养鱼的总投资不少于7万元,但不超过7.2万元,其中购置网箱等基础建设需要1.2万元.设他用x只网箱养殖A种淡水鱼,目前平均每只网箱养殖A、B两种淡水鱼所需投入及产业情况如下表:

 
项目类别
鱼苗投资
(百元)
饲料支出
(百元)
收获成品鱼(千克)
成品鱼价格
(百元/千克)
A种鱼
2.3
3
100
0.1
B种鱼
4
5.5
55
0.4

小王有哪几种养殖方式?
哪种养殖方案获得的利润最大?
根据市场调查分析,当他的鱼上市时,两种鱼的价格会有所变化,A种鱼价格上涨a%(0<a<50),B种鱼价格下降20%,考虑市场变化,哪种方案获得的利润最大?(利润=收入-支出.收入指成品鱼收益,支出包括基础建设投入、鱼苗投资及饲料支出)

科目 数学   题型 解答题   难度 较易
知识点: 一次函数的最值
登录免费查看答案和解析
相关试题

如图,在平面直角坐标系xOy中,已知点B的坐标为(2,0),点C的坐标为(0,8),sin∠CAB=, E是线段AB上的一个动点(与点A、点B不重合),过点E作EF∥AC交BC于点F,连结CE.

(1)求AC和OA的长;
(2)设AE的长为m,△CEF的面积为S,求S与m之间的函数关系式;
(3)在(2)的条件下试说明S是否存在最大值,若存在,请求出S的最大值,并求出此 时点E的坐标,判断此时△BCE的形状;若不存在,请说明理由.

如图,在Rt△ABC中,∠C = 90°,BC=9,CA=12,∠ABC的平分线BD交AC于点D, DE⊥DB交AB于点E. 点O在AB上,⊙O是△BDE的外接圆,交BC于点F,连结EF.求的值.

某大型超市为了缓解停车难的问题,建筑设计师提供了楼顶停车场的设计示意图(如图AC与ME平行).按规定,停车场坡道口上坡要张贴限高标志,以便告知车辆能否安全驶入.请根据下图求出汽车通过坡道口的限高DF的长.(结果精确到0.1m)
(参考数据: sin28°≈0.47,cos28°≈0.88, tan28°≈0.53)

如图,M是的中点,过点M的弦MN交弦AB于点C,⊙O的半径为4cm,MN=4cm.

(1)求圆心O到弦MN的距离;(2)求∠ACM的度数.

如图,四边形ABCD、DEFG都是正方形,连接AE、CG,AE与CG相交于点M,CG与AD相交于点N。求证:

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号