小王家是新农村建设中涌现出的 “养殖专业户”.他准备购置80只相同规格的网箱,养殖A、B两种淡水鱼(两种鱼不能混养).计划用于养鱼的总投资不少于7万元,但不超过7.2万元,其中购置网箱等基础建设需要1.2万元.设他用x只网箱养殖A种淡水鱼,目前平均每只网箱养殖A、B两种淡水鱼所需投入及产业情况如下表:
项目类别 |
鱼苗投资 (百元) |
饲料支出 (百元) |
收获成品鱼(千克) |
成品鱼价格 (百元/千克) |
A种鱼 |
2.3 |
3 |
100 |
0.1 |
B种鱼 |
4 |
5.5 |
55 |
0.4 |
小王有哪几种养殖方式?
哪种养殖方案获得的利润最大?
根据市场调查分析,当他的鱼上市时,两种鱼的价格会有所变化,A种鱼价格上涨a%(0<a<50),B种鱼价格下降20%,考虑市场变化,哪种方案获得的利润最大?(利润=收入-支出.收入指成品鱼收益,支出包括基础建设投入、鱼苗投资及饲料支出)
如图,在 中, ,垂足 在 的延长线上, ,垂足 在 的延长线上,求证: .
如图,在平面直角坐标系中,抛物线 , 为常数, 经过两点 , ,交 轴正半轴于点 .
(1)求抛物线 的解析式.
(2)过点 作 垂直于 轴,垂足为点 ,连接 , ,将 以 为轴翻折,点 的对应点为 ,直线 交 轴于点 ,请判断点 是否在抛物线上,并说明理由.
(3)在(2)的条件下,点 是线段 (不包含端点)上一动点,过点 垂直于 轴的直线分别交直线 及抛物线于点 , ,连接 ,请探究:是否存在点 ,使 是以 为腰的等腰三角形?若存在,请求出点 的坐标;若不存在,请说明理由.
已知,在 中,点 在 上,点 是 延长线上一点,且 ,连接 交 于点 .
(1)猜想证明:如图1,在 中,若 ,学生们发现: .下面是两位学生的证明思路:
思路1:过点 作 ,交 于点 ,可证 得出结论;
思路2:过点 作 ,交 的延长线于点 ,可证 得出结论;
请你参考上面的思路,证明 (只用一种方法证明即可).
(2)类比探究:在(1)的条件下(如图 ,过点 作 于点 ,试探究线段 , , 之间满足的数量关系,并证明你的结论.
(3)延伸拓展:如图2,在 中,若 , , ,请你用尺规作图在图2中作出 的垂直平分线交 于点 (不写作法,只保留作图痕迹),并用含 的代数式直接表示 的值.
今年是“精准扶贫”攻坚关键年,某扶贫工作队为对口扶贫村引进建立了一村集体企业,并无偿提供一笔无息贷款作为启动资金,双方约定:①企业生产出的产品全部由扶贫工作队及时联系商家收购;②企业从生产销售的利润中,要保证按时发放工人每月最低工资32000元.已知该企业生产的产品成本为20元 件,月生产量 (千件)与出厂价 (元 的函数关系可用图中的线段 和 表示,其中 的解析式为 为常数).
(1)求该企业月生产量 (千件)与出厂价 (元 之间的函数关系式,并写出自变量 的取值范围.
(2)当该企业生产出的产品出厂价定为多少元时,月利润 (元 最大?最大利润是多少? 月利润 (出厂价 成本) 月生产量 工人月最低工资 .
如图,以 的边 为直径的 交 边于点 ,交 边于点 ,连接 ,过点 的切线交 的延长线于点 , .
(1)求证: 为等腰三角形.
(2)求证: .