如图,路灯(点)距地面8米,身高1.6米的小明从距路灯的底部(
点)20米的A点,沿OA所在的直线行走14米到B点时,身影的长度是变长了还是变短了?变长或变短了多少米?
如图,我国一艘海监执法船在南海海域进行常态化巡航,在 处测得北偏东 方向距离为40海里的 处有一艘可疑船只正在向正东方向航行,我海监执法船便迅速沿北偏东 方向前往监视巡查,经过一段时间在 处成功拦截可疑船只.
(1)求 的度数;
(2)求我海监执法船前往监视巡查的过程中行驶的路程(即 长)?(结果精确到0.1海里, , ,
已知关于 的方程
(1)求证:无论 为何值,原方程都有实数根;
(2)若该方程的两实数根 、 为一菱形的两条对角线之长,且 ,求 值及该菱形的面积.
在大课间活动中,体育老师随机抽取了八年级甲、乙两个班部分女同学进行仰卧起坐的测试,并对成绩进行统计分析,绘制了频数分布表和统计图,请你根据图表中的信息完成下列问题:
分 组 |
频数 |
频率 |
第一组 |
3 |
0.15 |
第二组 |
|
0.3 |
第三组 |
7 |
0.35 |
第四组 |
4 |
|
(1)频数分布表中 , ,并将统计图补充完整;
(2)如果该校八年级共有女生180人,估计仰卧起坐一分钟完成30或30次以上的女学生有多少人;
(3)已知第一组中只有一个甲班同学,第四组中只有一个乙班同学,老师随机从这两个组中各选一名学生谈心得体会,用树状图或列表求所选两人正好都是甲班学生的概率.
先化简 ,再从 、 、0、2中选一个合适的数作为 的值代入求值.
已知抛物线 ,其中 ,且 .
(1) 直接写出关于 的一元二次方程 的一个根;
(2) 证明: 抛物线 的顶点 在第三象限;
(3) 直线 与 , 轴分别相交于 , 两点, 与抛物线 相交于 , 两点 . 设抛物线 的对称轴与 轴相交于 . 如果在对称轴左侧的抛物线上存在点 ,使得 与 相似, 并且 ,求此时抛物线的表达式 .