已知抛物线的顶点是C(0,a)(a>0,a为常数),并经过点(2a,2a),点D(0,2a)为一定点.
求含有常数a的抛物线的解析式
设点P是抛物线上任意一点,过P作PH⊥x轴,垂足是H,求证:PD=PH;
设过原点O的直线l与抛物线在第一象限相交于A、B两点.若DA=2DB,且S△ABD=4
,求a的值.
如图所示,点A、C在等腰直角三角形HBE的直角边BH和BE上,且AB=BC,CF⊥HE。EF⊥AE于E。试探究线段AE、EF的数量关系,并证明你的结论
一家蔬菜公司收购某种绿色蔬菜140吨,准备加工后进行销售,销售后获利的情况如右图所示
已知该公司的加工能力是:每天能精加工10吨或粗加工20吨。但两种加工一天之内不能同时进行受季节等条件的限制,公司必须在一定时间内将这批蔬菜全部加工后销售。(1)若要求12天刚好加工完140吨蔬菜,则该公司应安排几天精加工,几天粗加工
(2)若要求在不超过9天的时间内,将140吨蔬菜全部加工完,则加工这批蔬菜销售后最多能获得多少利润?此时应该如何分配这批蔬菜精、粗加工的时间?
某校八年级进行了一次数学测试,教务处抽取10%的学生成绩进行统计,结果如图7所示,(其中规定86分以上为优秀,76分~85分为良好;60~75为几个;59分以下为不及格)(1)在抽取的学生中,不及格人数为
(2)小明按以下方法计算出所抽取学生数学测试成绩的平均分是:(90+80+65+45)÷4=70.根据所学的统计知识,判断小明的计算是否正确,若不正确,请写出正确的算式并计算出结果
(3)若抽取的学生中不及格学生的成绩恰好等于某一个优秀学生的分数,请估算出该校八年级优秀等级学生的人数
解不等式组并把解集在数轴上表示出来
(本小题满分9分)
解不等式组并在所给的数轴上表示出其解集.