设函数在
及
时取得极值.
(1)求a、b的值;
(2)当时,求函数
在区间
上的最大值.
已知:集合M是满足下列性质的函数f(x)的全体:在定义域内存在x,使得
f(x+1)=f(x
)+f(1)成立。
(1)函数f(x)=是否属于集合M?说明理由;
(2)设函数f(x)=lg,求实数a的取值范围;
(3)证明:函数f(x)=2+x
M。
已知:函数f(x)=ax(0<a<1),
(Ⅰ)若f(x)=2,求f(3x
);
(Ⅱ)若f(2x-3x+1)
f(x
+2x-5),求x的取值范围。
已知:函数f(x)=,x
,
(1)当a=-1时,判断并证明函数的单调性并求f(x)的最小值;
(2)若对任意x,f(x)>0都成立,试求实数a的取值范围。
已知:函数f(x)=x-bx+3,且f(0)=f(4)。
(1)求函数y=f(x)的零点,写出满足条件f(x)<0的x的集合;
(2)求函数y=f(x)在区间[0,3]上的最大值和最小值。
已知:函数f(x)=+lg(3
-9)的定义域为A,集合B=
,
(1)求:集合A;
(2)求:AB。