已知椭圆的左、右焦点分别是
、
,离心率为
,椭圆上的动点
到直线
的最小距离为2,延长
至
使得
,线段
上存在异于
的点
满足
.
(1) 求椭圆的方程;
(2) 求点的轨迹
的方程;
(3) 求证:过直线上任意一点必可以作两条直线
与的轨迹
相切,并且过两切点的直线经过定点.
(本小题满分12分)某高校自主招生选拔共有三轮考核,每轮设有一个问题,能正确回答问题者进入下一轮考核,否则即被淘汰.已知某同学能正确回答第一、二、三轮的问题的概率分别为,且各轮问题能否正确回答互不影响。
(Ⅰ)求该同学被淘汰的概率;
(Ⅱ)该同学在选拔中回答问题的个数记为,求随机变量
的分布列与数学期望.
(本小题满分12分)已知数列的前
项和为
,首项
,且对于任意
都有
.
(Ⅰ)求的通项公式;
(Ⅱ)设,且数列
的前
项之和为
,求证:
(本小题满分12分)在锐角中,
.
(Ⅰ)求角;(Ⅱ)若
,求
的取值范围.
选修4-5:不等式选讲
已知函数
(1)若的解集为
,求实数
的值;
(2)当且
时,解关于
的不等式
选修4-4:坐标系与参数方程选讲
在直角坐标系中,曲线
的参数方程为
(
为参数),以原点为极点,以
轴正半轴为极轴,建立极坐标系,曲线
的极坐标方程为
(1)求曲线的普通方程与曲线
的直角坐标方程;
(2)设点,曲线
与曲线
交于
,求
的值.