游客
题文

某展览大厅有3个入口和2个出口,其示意图如下. 参观者从任意一个入口进入,参观结束后从任意一个出口离开.

(1)用树状图表示,小明从进入到离开,对于入口和出口的选择有多少种不同的结果?
(2)小明从入口1进入并从出口A离开的概率是多少?

科目 数学   题型 解答题   难度 中等
知识点: 利用频率估计概率
登录免费查看答案和解析
相关试题

某体育用品商店试销一款成本为50元的排球,规定试销期间单价不低于成本价,且获利不得高于40%.经试销发现,销售量y(个)与销售单价x(元)之间满足如图所示的一次函数关系。

(1)试确定y与x之间的函数关系式;
(2)若该体育用品商店试销的这款排球所获得的利润Q元,试写出利润Q(元)与销售单价x(元)之间的函数关系式;当试销单价定为多少元时,该商店可获最大利润?最大利润是多少元?
(3)若该商店试销这款排球所获得的利润不低于600元,请确定销售单价x的取值范围.

已知二次函数y=x2﹣4x+3.
(1)用配方法求其图象的顶点C的坐标,并描述该函数的函数值随自变量的增减而变化的情况;
(2)求函数图象与x轴的交点A,B的坐标,及△ABC的面积.

如图,在平面直角坐标系中,直线与抛物线交于A、B两点,点A在x轴上,点B的横坐标为-8.

(1)求该抛物线的解析式;
(2)点P是直线AB上方的抛物线上一动点(不与点A、B重合),过点P作x轴的垂线,垂足为C,交直线AB于点D,作PE⊥AB于点E.
①设△PDE的周长为l,点P的横坐标为x,求l关于x的函数关系式,并求出l的最大值;
②连接PA,以PA为边作图示一侧的正方形APFG.随着点P的运动,正方形的大小、位置也随之改变.当顶点F或G恰好落在y轴上时,直接写出对应的点P的坐标.

定义:如图1,射线OP与原点为圆心,半径为1的圆交于点P,记∠xOP=α,则点P的横坐标叫做角的余弦值,记作;点P的纵坐标叫做角的正弦值,记作;纵坐标与横坐标的比值叫做角的正切值,记作
如:当时,点P的横坐标为=,纵坐标为=即P().
又如:在图2中,为锐角), PN轴,QM轴,易证△OQM≌△OPN, 则Q点的纵坐标等于点P的横坐标,得=
解决以下四个问题:

(1)当时,求点P的坐标;
(2)当是锐角时,则+1(用>或<填空),=
(3)求证:为锐角);
(4)求证:tan=为锐角);

某学校开展“青少年科技创新比赛”活动,“喜洋洋”代表队设计了一个遥控车沿直线轨道AC做匀速直线运动的模型.甲、乙两车同时分别从A,B出发,沿轨道到达C处,在AC上,甲的速度是乙的速度的1.5倍,设t后甲、乙两遥控车与B处的距离分别为,则与t的函数关系如图,试根据图象解决下列问题:

(1)填空:乙的速度=米/分;
(2)写出与t的函数关系式;
(3)若甲、乙两遥控车的距离超过10米时信号不会产生相互干扰,试探求什么时间两遥控车的信号不会产生相互干扰?

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号