如图,在四棱锥P-ABCD中,PD⊥平面ABCD,PD=DC=BC=1,AB=2,AB∥DC,∠BCD=900。
求证:PC⊥BC;
求点A到平面PBC的距离。
已知椭圆C:的左焦点为
(-1,0),离心率为
,过点
的直线
与椭圆C交于
两点.
(Ⅰ)求椭圆C的方程;
(II)设过点F不与坐标轴垂直的直线交椭圆C于A、 B两点,线段AB的垂直平分线与轴交于点G,求点G横坐标的取值范围.
设函数
(Ⅰ)若函数在
处取得极小值是
,求
的值;
(Ⅱ)求函数的单调递增区间;
(Ⅲ)若函数在
上有且只有一个极值点, 求实数
的取值范围.
在空间五面体ABCDE中,四边形ABCD是正方形,,
. 点
是
的中点. 求证:
(I)
(II)
(本小题15分)
已知函数.
(Ⅰ)若,求曲线
在点
处的切线方程;
(Ⅱ)若函数在其定义域内为增函数,求正实数
的取值范围;
(Ⅲ)设函数,若在
上至少存在一点
,使得
>
成立,求实数
的取值范围。
(本小题10分)已知函数
⑴求证:函数f(x)在上为增函数;⑵证明:方程
没有负根.