盒子里装有6件包装完全相同的产品,已知其中有2件次品,其余4件是合格品。为了找到2件次品,只好将盒子里的这些产品包装随机打开检查,直到两件次品被全部检查或推断出来为止。
(1)求经过3次检查才将两件次品检查出来的概率;
(2)求两件次品被全部检查或推断出来所需检查次数恰为4次的概率。
(选修4-2:矩阵与变换)
若点在矩阵
对应变换的作用下得到点
,求矩阵
的逆矩阵.
(选修4-1:几何证明选讲)
如图,设、
是圆
的两条弦,直线
是线段
的垂直平分线.已知
,求线段
的长度.
(本小题满分16分)设数列的前
项和为
,满足
.
(1)当时,
①设,若
,
.求实数
的值,并判定数列
是否为等比数列;
②若数列是等差数列,求
的值;
(2)当时,若数列
是等差数列,
,且
,
,
求实数的取值范围.
(本小题满分16分)已知函数,
,其中函数
的图象在点
处的切线平行于
轴.
(1)确定与
的关系;
(2)若,试讨论函数
的单调性;
(3)设斜率为的直线与函数
的图象交于两点
,求证:
.
(本小题满分16分)设椭圆的离心率为
,直线
与以原点为圆心、椭圆
的短半轴长为半径的圆
相切.
(1)求椭圆的方程;
(2)设直线与椭圆
交于不同的两点
,以线段
为直径作圆
.若圆
与
轴相交于不同的两点
,求
的面积;
(3)如图,、
、
、
是椭圆
的顶点,
是椭圆
上除顶点外的任意点,直线
交
轴于点
,直线
交
于点
.设
的斜率为
,
的斜率为
,求证:
为定值.