电视传媒公司为了解某地区观众对某类体育节目的收视情况,随机抽取了100名观众进行调查,其中女性有55名。下面是根据调查结果绘制的观众日均收看该体育节目时间的频率分布直方图:
将日均收看该体育节目时间不低于40分钟的观众称为“体育迷”,已知“体育迷”中有10名女性.
(Ⅰ)根据已知条件完成下面的2×2列联表,并据此资料判断是否有95%的把握认为“体育迷”与性别有关?
非体育迷 |
体育迷 |
合计 |
|
男 |
|||
女 |
|||
合计 |
(Ⅱ)将日均收看该体育节目不低于50分钟的观众称为“超级体育迷”,已知“超级体育迷”中有2名女性,若从“超级体育迷”中任意选取2名,求至少有1名女性观众的概率.
附:K2=,其中n=a+b+c+d.
P(K2≥k) |
0.05 |
0.01 |
k |
3.841 |
6.635 |
求下列各曲线的标准方程
(Ⅰ)实轴长为12,离心率为,焦点在x轴上的椭圆;
(Ⅱ)抛物线的焦点是双曲线的左顶点.
已知命题:“
”,命题
:“
”,若命题“
”是真命题,求实数
的取值范围。
(本小题14分)已知函数,设
。
(Ⅰ)求F(x)的单调区间;
(Ⅱ)若以图象上任意一点
为切点的切线的斜率
恒成立,求实数
的最小值。
(Ⅲ)是否存在实数,使得函数
的图象与
的图象恰好有四个不同的交点?若存在,求出
的取值范围,若不存在,说名理由。
(本小题满分13分)已知中心在坐标原点O,焦点在轴上,长轴长是短轴长的2倍的椭圆经过点M(2,1)
(Ⅰ)求椭圆的方程;
(Ⅱ)直线平行于
,且与椭圆交于A、B两个不同点.
(ⅰ)若为钝角,求直线
在
轴上的截距m的取值范围;
(ⅱ)求证直线MA、MB与x轴围成的三角形总是等腰三角形.