如图,△ABC中,点D、E在边AB上,点F在边BC上,点G在边AC上,EF、 CD与BG交于 M、N两点,∠ABC=50°.若∠BMF+∠GNC=180°,CD与EF平行吗?为什么?
在(1)的基础上,若∠GDC=∠EFB,试求∠ADG的度数。
如图,△ABC中,AB=4,BC=3,以C为圆心,CB的长为半径的圆和AC交于点D,连接BD,若∠ABD=∠C.
(1)求证:AB是⊙C的切线;
(2)求△DAB的面积.
甲、乙两个不透明布袋,甲袋中装有3个完全相同的小球,分别标有数字0,1,2,;乙袋中装有3个完全相同的小球,分别标有数字﹣1,﹣2,0;现从甲袋中随机抽取一个小球,记录标有的数字为x,再从乙袋中随机抽取一个小球,记录标有的数字为y,确定点M坐标为(x,y).
(1)用树状图或列表法列举点M所有可能的坐标;
(2)在平面直角坐标系xOy中,⊙O的半径是2,求过点M(x,y)能作⊙O的切线的概率.
已知中,AB=AC=BC=3.请在图中用尺规作图画出
的内切圆,保留作图痕迹,并求出内切圆的半径。
已知,△ABC中,AC=BC,∠ACB=90°,CD为边AB上的中线,若E是射线CA上任意一点,DF⊥DE,交直线BC于F点.G为EF的中点,连接CG并延长交直线AB于点H.
(1)如图①,若E在边AC上.试说明:①AE=CF;②CG=GD;
(2)如图②,若E在边CA的延长线上.(1)中的两个结论是否仍成立?(直接写出成立结论的序号,不要说明理由)
(3)若AE=3,CH=5,求边AC的长.
某市出租车的收费标准为:不超过3km的计费为7.0元,3km后按2.4元/km计费.
(1)当行驶路程x超过3km时,写出车费y(元)与行驶路程x(km)之间的函数关系式;
(2)若小明乘出租车的行驶路程为5km,则小明应付车费多少元?
(3)若小亮乘出租车出行,付费19元,则小亮乘车的路程为多少km?