如图,已知,△ABC与△DCE为一小一大的两个等腰直角三角形,顶点C互相重合。连结AE、BD交于O,其中△ABC保持不动,当△DCE绕点C旋转时,∠AOB的大小有无变化?证明你的结论.
为了了解“通话时长”(“通话时长”指每次通话时间)的分布情况,小强收集了他家1000个“通话时长”数据,这些数据均不超过18(分钟).他从中随机抽取了若干个数据作为样本,统计结果如下表,并绘制了不完整的频数分布直方图.
“通话时长” (x分钟) |
0<x≤3 |
3<x≤6 |
6<x≤9 |
9<x≤12 |
12<x≤15 |
15<x≤18 |
次数 |
36 |
a |
8 |
12 |
8 |
12 |
根据表、图提供的信息,解答下面的问题:
(1)a=,样本容量是;
(2)求样本中“通话时长”不超过9分钟的频率:;
(3)请估计小强家这1000次通话中“通话时长”超过15分钟的次数.
如图,在四边形ABCD中,AB=AD,BC=DC,AC、BD相交于点O,点E在AO上,且OE=OC.
(1)求证:∠1=∠2;
(2)连结BE、DE,判断四边形BCDE的形状,并说明理由.
化简:.
读取表格中的信息,解决问题.
n=1 |
![]() |
![]() |
![]() |
n=2 |
a2=b1+2c1 |
b2=c1+2a1 |
c2=a1+2b1 |
n=3 |
a3=b2+2c2 |
b3=c2+2a2 |
c=a2+2b2 |
… |
… |
… |
… |
满足的n可以取得的最小整数是.
如图1,已知点A(2,0),B(0,4),∠AOB的平分线交AB于C,一动点P从O点出发,以每秒2个单位长度的速度,沿y轴向点B作匀速运动,过点P且平行于AB的直线交x轴于Q,作P、Q关于直线OC的对称点M、N.设P运动的时间为t(0<t<2)秒.
(1)求C点的坐标,并直接写出点M、N的坐标(用含t的代数式表示);
(2)设△MNC与△OAB重叠部分的面积为S.
①试求S关于t的函数关系式;
②在图2的直角坐标系中,画出S关于t的函数图象,并回答:S是否有最大值?若有,写出S的最大值;若没有,请说明理由.