如图,在Rt△ABC中,∠C为直角,以AB上一点O为圆心,OA长为半径的圆与BC相切于点D,分别交AC、AB于点E、F.若AC=8,AB=12,求⊙O的半径;
连接OE、ED、DF、EF.若四边形BDEF是平行四边形,试判断四边形OFDE的形状,并说明理由
某课题组为了解全市九年级学生对数学知识的掌握情况,在一次数学检测中,从全市20000名九年级考生中随机抽取部分考生的数学成绩进行调查,并将调查结果绘制成如下图表:
分数段 |
频数 |
频率 |
![]() |
20 |
0.10 |
![]() |
28 |
b |
![]() |
54 |
0.27 |
![]() |
a |
0.20 |
![]() |
24 |
0.12 |
![]() |
18 |
0.09 |
![]() |
16 |
0.08 |
(1)表中a和b所表示的数分别为a= ,b= ;
(2)请在图中补全频数分布直方图;
(3)如果把成绩在70分以上(含70分)定为合格,那么该市20000名九年级考生数学成绩为合格的考生约有多少名?
在一个不透明的布口袋中装有只有颜色不同,其他都相同的白、红、黑三种颜色的小球各只,甲、乙两人进行摸球游戏:甲先从袋中摸出一球,看清颜色后放回,再由乙从袋中摸出一球.
(1)试用树状图(或列表法)表示摸球游戏所有可能的结果;
(2)如果规定:乙摸到与甲相同颜色的球为乙胜,否则为甲胜,问谁在游戏中获胜的可能性更大些?
(1)计算:3sin30°-2cos45°+tan2600;
(2)在Rt△ABC中,∠C=90° , c=20,∠A=30° , 解这个直角三角形.
如图,∠AOB是直角,射线OC从OA出发,以每秒8度的速度顺时针方向转动;射线OD从OB出发,以每秒2度的速度逆时针方向转动.当OC与OA成一直线时停止转动.
(1)______秒时,OC与OD重合.
(2)当OC与OD的夹角是30度时,求转动的时间是多少秒?
(3)若OB平分∠COD,求转动的时间是多少秒?并画出此时的OC与OD,写出图中∠AOD的余角.
已知:如图,B、C是线段AD上两点,且AB︰BC︰CD=2︰4︰3,M是AD的中点,CD=9cm,求线段MC的长.