如题图所示,在光滑水平面上静止有质量均为m的滑槽A和木板B,木板B上表面粗糙,滑槽A上有光滑的1/4圆弧轨道,其圆弧轨道O点切线水平且与木板B上表面相平,A、B靠在一起.一可视为质点的物块C,质量也为m,从木板B的右端以初速度v0滑上木板.已知物块C与木板B的动摩擦因数为,第一次刚至O点时速度为
,随后滑上滑槽A,A、B分离.求:
(1)物块C第一次刚至O点时木板B的速度v;
(2)木板的长度L;
(3)物块C第二次返回到O点时滑槽A的速度大小.
如图为某种鱼饵自动投放器中的投饵管装置示意图,其下半部AB是一长为2R的竖直细管,上半部BC是半径为R的四分之一圆弧弯管,管口沿水平方向,AB管内有一原长为R、下端固定的轻质弹簧。投饵时,每次总将弹簧长度压缩到0.5R后锁定,在弹簧上段放置一粒鱼饵,解除锁定,弹簧可将鱼饵弹射出去。设质量为m的鱼饵到达管口C时,对管壁的作用力恰好为零。不计鱼饵在运动过程中的机械能损失,且锁定和解除锁定时,均不改变弹簧的弹性势能。已知重力加速度为g。求:
(1)质量为m的鱼饵到达管口C时的速度大小v1;
(2)弹簧压缩到0.5R时的弹性势能Ep;
(3)已知地面与水面相距1.5R,若使该投饵管绕AB管的中轴线OO-。在角的范围内来回缓慢转动,每次弹射时只放置一粒鱼饵,鱼饵的质量在
到m之间变化,且均能落到水面。持续投放足够长时间后,鱼饵能够落到水面的最大面积S是多少?
如图所示,在竖直面内有固定轨道ABCDE,其中BC是半径为R的四分之一圆弧轨道,AB(AB>R)是竖直轨道,CE是足够长的水平轨道,CD>R。AB与BC相切于B点,BC与CE相切于C点,轨道的AD段光滑,DE段粗糙且足够长。一根长为R的轻杆两端分别固定有质量均为m的相同小球P、Q(视为质点),将轻杆锁定在图示位置,此位置Q与B等高。现解除锁定释放轻杆,轻杆将沿轨道下滑,Q球经过D点后,沿轨道继续滑行了3R而停下。重力加速度为g。求:
(1)P球到达C点时的速度大小v1;
(2)两小球与DE段轨道间的动摩擦因数;
(3)Q球到达C点时的速度大小v2。
质量m=0.02kg的物体置于水平桌面上,在F=2N的水平拉力作用下前进了="0.6" m,如图所示,此时F停止作用,物体与桌面间的动摩擦因数μ=0.2,(g取10m/s2)求:
(1)物体滑到="1.0" m处时的速度;
(2)物体能滑多远?
若已知行星绕太阳公转的半径为r,公转的周期为T,万有引力恒量为G,用已知物理量表示太阳的质量M。
如图所示,轻杆BC的C点用光滑铰链与墙壁固定,杆的B点通过水平细绳AB使杆与竖直墙壁保持30°的夹角.若在B点悬挂一个定滑轮(不计重力),某人用它匀速地提起重物.已知重物的质量m=30 kg,人的质量M=50 kg,g取10 m/s2.试求:
(1)此时地面对人的支持力的大小;
(2)轻杆BC和绳AB所受力的大小.