如图,在平面直角坐标系中,点C(-3,0),点A、B分别在x轴,y轴的正半轴上,且满足.
求点A、B坐标
若点P从点C出发,以每秒1个单位的速度沿射线CB运动,连接AP。设△ABP面积为S,点P的运动时间为t秒,求S与t的函数关系式,并写出自变量的取值范围
在(2)的条件下,是否存在点P,使以点A、B、P为顶点的三角形与△AOB相似?若存在,请直接写出点P的坐标;若不存在,请说明理由。
如图1,抛物线 与 轴的负半轴交于点 ,与 轴交于点 ,顶点为 , 轴于点 .
(1)求抛物线的解析式;
(2)连接 ,在 轴下方的抛物线上存在点 , 与 的交点 平分 ,求点 的坐标;
(3)将线段 和 绕点 同时顺时针旋转相同的角度,得到线段 , ,直线 , 相交于点 .
①如图2,设 与 轴交于点 ,线段 与 交于点 ,求 的值;
②连接 , 的长随线段 , 的旋转而发生变化,请直接写出线段 长度的取值范围.
如图1, ,分别在 的两边 , 上取点 , ,使 ,点 在 的平分线 上, 于点 ,点 在线段 上(不与点 重合),以 , 为邻边作 ,连接 , .
(1)猜想 与 之间的关系,并证明你的猜想;
(2)如图2,连接 交 于点 .
①求证: .
②若 , ,求线段 的长.
某公司去年年初投资1000万元引进先进的生产线生产某种新产品.根据对该产品的市场分析,生产每件该产品需成本60元,产品售价不超过200元 件,且产品的年销售量 (万件)是产品售价 (元 件)的一次函数,其部分对应数据如下表所示:
产品售价 (元 件) |
|
120 |
140 |
160 |
180 |
|
销售量 (万件) |
|
9 |
8 |
7 |
6 |
|
(1)求 关于 的函数解析式;
(2)去年该公司是盈利还是亏损?并求出盈利最多或亏损最少时的产品售价;
(3)在(2)的前提下,若公司想使去年和今年生产的新产品共获利395万元,那么该公司今年应怎样重新确定产品售价?
如图,一次函数 与反比例函数 图象的两个交点分别为 , , 轴于点 , 轴于点 .
(1)根据图象直接回答:在第一象限内,当 取何值时,一次函数值大于反比例函数值?
(2)求一次函数的解析式及 的值;
(3) 是线段 上的一点,连接 , ,若 和 的面积相等,求点 的坐标.
如图,亿隆小区内有一条南北方向的小路 ,某快递员从小路旁的 处出发沿南偏东 方向行走 将快递送至 楼,又继续从 楼沿南偏西 方向行走 将快递送至 楼,求此时快递员到小路 的距离.(计算结果精确到 .参考数据: , , ,