有一种舞台灯,外形是正六棱柱,在其每一个侧面(编号为①②③④⑤⑥)上安装5只颜色各异的灯,假若每只灯正常发光的概率为0.5,若一个侧面上至少有3只灯发光,则不需要更换这个面,否则需要更换这个面,假定更换一个面需要100元,用表示更换的面数,用
表示更换费用。
(1)求①号面需要更换的概率;
(2)求6个面中恰好有2个面需要更换的概率;
(3)写出的分布列,求
的数学期望。
(本小题满分12分)
对于函数f(x),若存在x0∈R,使f(x0)=x0成立,则称x0为f(x)的不动点已知函数f(x)=ax2+(b+1)x+(b–1)(a≠0)
(1)若a=1,b=–2时,求f(x)的不动点;
(2)若对任意实数b,函数f(x)恒有两个相异的不动点,求a的取值范围;
(本小题满分12分)
一个小服装厂生产某种风衣,月销售量x(件)与售价P(元/件)之间的关系为P=160-2x,生产x件的成本R=500+30x元
(1)该厂的月产量多大时,月获得的利润不少于1300元?
(2)当月产量为多少时,可获得最大利润?最大利润是多少元?
(本小题满分12分)
已知,设P:函数
在R上单调递减,Q:不等式
的解集为R
如果P和Q有且仅有一个正确,求 的取值范围
(本小题满分10分)
已知函数在定义域
上为增函数,且满足
(1)求的值 (2)解不等式
已知椭圆的中心在原点,焦点在
轴上,点
、
分别是椭圆的左、右焦点,在椭圆
的右准线上的点
,满足线段
的中垂线过点
.直线
:
为动直线,且直线
与椭圆
交于不同的两点
、
.
(Ⅰ)求椭圆C的方程;
(Ⅱ)若在椭圆上存在点
,满足
(
为坐标原点),
求实数的取值范围;
(Ⅲ)在(Ⅱ)的条件下,当取何值时,
的面积最大,并求出这个最大值.