某校初三课外活动小组,在测量树高的一次活动中,如图所示,测得树底部中心A到斜坡底C的水平距离为8. 8m.在阳光下某一时刻测得1米的标杆影长为0.8m,树影落在斜坡上的部分CD= 3.2m.已知斜坡CD的坡比i=1︰,求树高AB。(结果保留整数,参考数据:
1.7)
如图,△和△
中,
,
,
、
相交于点
,点
、
、
、
在同一直线上,且
.求证:
.
解方程:.
如图甲,四边形OABC的边OA、OC分别在x轴、y轴的正半轴上,顶点在B点的抛物线交x轴于点A、D,交y轴于点E,连接AB、AE、BE.已知tan∠CBE=,A(3,0),D(﹣1,0),E(0,3).
(1)求抛物线的解析式及顶点B的坐标;
(2)求证:CB是△ABE外接圆的切线;
(3)试探究坐标轴上是否存在一点P,使以D、E、P为顶点的三角形与△ABE相似,若存在,直接写出点P的坐标;若不存在,请说明理由;
(4)设△AOE沿x轴正方向平移t个单位长度(0<t≤3)时,△AOE与△ABE重叠部分的面积为s,求s与t之间的函数关系式,并指出t的取值范围.
已知:y关于x的函数y=(k﹣1)x2﹣2kx+k+2的图象与x轴有交点.
(1)求k的取值范围;
(2)若x1,x2是函数图象与x轴两个交点的横坐标,且满足(k﹣1)x12+2kx2+k+2=4x1x2.
①求k的值;②当k≤x≤k+2时,请结合函数图象确定y的最大值和最大值.
荆门市是著名的“鱼米之乡”.某水产经销商在荆门市长湖养殖场批发购进草鱼和乌鱼(俗称黑鱼)共75千克,且乌鱼的进货量大于40千克.已知草鱼的批发单价为8元/千克,乌鱼的批发单价与进货量的函数关系如图所示.
(1)请直接写出批发购进乌鱼所需总金额y(元)与进货量x(千克)之间的函数关系式;
(2)若经销商将购进的这批鱼当日零售,草鱼和乌鱼分别可卖出89%、95%,要使总零售量不低于进货量的93%,问该经销商应怎样安排进货,才能使进货费用最低?最低费用是多少?