(18分)如图甲,电阻不计的轨道MON与PRQ平行放置,ON及RQ与水平面的倾角=53°,MO及PR部分的匀强磁场竖直向下,ON及RQ部分的磁场平行轨道向下,磁场的磁感应强度大小相同,两根相同的导体棒ab和cd分别放置在导轨上,与导轨垂直并始终接触良好。棒的质量m=1.0kg,R=1.0
,长度与导轨间距相同,L=1.0m,棒与导轨间动摩擦因数
=0.5,现对ab棒施加一个方向向右,大力随乙图规律变化的力F的作用,同时由静止释放cd棒,则ab棒做初速度为零的匀加速直线运动,g取10m/s2,求:
(1)ab棒的加速度大小;
(2)磁感应强度B的大小;
(3)若已知在前2s内外力做功W=30J,求这一过程中电路产生的焦耳热;
(3)求cd棒达到最大速度所需的时间.
如图所示,在光滑的水平面上放有一个长木板M,它的长度为L.现有一个小木块m以一定的初速度v从木板的左端滑向右端,当木块m滑到木板M的右端
时,m的速度变为
,M、m间的动摩擦因数为μ,求
m在M上滑行的时间
m滑到M右端时M的速度
它们各自滑行的距离
一质量为的小孩站在电梯内的体重计上。电梯从
时刻由静止开始上升,在
到
内体重计示数
的变
化如
图所示. 试问:在这段时间内电
梯上升的高度是多少?取重力加速度
如图所示, xoy为空间直角坐标系,PQ与y轴正方向成θ=30°角。在第四象限和第一象限的xoQ区域存在磁感应强度为B的匀强磁场,在Poy区域存在足够大的匀强电场,电场方向与PQ平行,一个带电荷量为+q,质量为m的带电粒子从-y轴上的 A(0,-L)点,平行于x轴方向射入匀强磁场,离开磁场时速度方向恰与PQ垂直,粒子在匀强电场中经时间后再次经过x轴, 粒子重力忽略不计。求:
(1)从粒子开始进入磁场到刚进入电场的时间;
(2)匀强电场的电场强度E的大小。
如图甲所示,空间存在一宽度为2L有界匀强磁场,磁场方向垂直纸面向里。在光滑绝缘水平面内有一边长为L的正方形金属线框,其质量m=1kg、电阻R=4Ω,在水平向左的外力F作用下,以初速度v0=4m/s匀减速进入磁场,线框平面与磁场垂直,外力F大小随时间t变化的图线如图乙所示。以线框右边刚进入磁场时开始计时,求:
(1)匀强磁场的磁感应强度B;
(2)线框进入磁场的过程中,通过线框的电荷量q;
(3)判断线框能否从右侧离开磁场?说明理由。
如图所示,左侧为一个半径为R的半球形的碗固定在水平桌面上,碗口水平, O点为球心,碗的内表面及碗口光滑。右侧是一个固定光滑斜面,斜面足够长,倾角θ=30°。一根不可伸长的不计质量的细绳跨在碗口及光滑斜面顶端的光滑定滑轮两端上,线的两端分别系有可视为质点的小球m1和m2,且m1>m2。开始时m1恰在右端碗口水平直径A处, m2在斜面上且距离斜面顶端足够远,此时连接两球的细绳与斜面平行且恰好伸直。当m1由静止释放运动到圆心O的正下方B点时细绳突然断开,不计细绳断开瞬间的能量损失。
(1)求小球m2沿斜面上升的最大距离s;
(2)若已知细绳断开后小球m1沿碗的内侧上升的最大高度为R/2,求=?