2009年某市出口贸易总值为22.52亿美元,至2011年出口贸易总值达到50.67亿美元,反映了两年来该市出口贸易的高速增长.
(1)求这两年该市出口贸易的年平均增长率;
(2)按这样的速度增长,请你预测2012年该市的出口贸易总值.
(提示:2252=4×563,5067=9×563)
如图所示,在△ABC中,AC=10,BC=17,CD=8,AD=6.
求:(1)BD的长;
(2)△ABC的面积.
如图,AB=AE,∠1=∠2,∠C=∠D.求证:△ABC≌△AED.
(1)计算
(2)解方程
在平面直角坐标系中,对于任意三点
、
、
的“矩面积”,给出如下定义:“水平底”
:任意两点横坐标差的最大值,“铅垂高”
:任意两点纵坐标差的最大值,则“矩面积”
.
例如:三点坐标分别为,
,
,则“水平底”
,“铅垂高”
,“矩面积”
.
(1)已知点,
,
.
①若、
、
三点的“矩面积”为
,求点
的坐标;
②、
、
三点的“矩面积”的最小值为
(2)已知点,
,
,其中
.若
、
、
三点的“矩面积”的为8,求
的取值范围;
如图,在直角坐标系中,Rt△OAB的直角顶点A在x轴上,OA=4,AB=3.动
点M从点A出发,以每秒1个单位长度的速度,沿AO向终点O移动;同时点N从点O出发,以每秒1.25个单位长度的速度,沿OB向终点B移动.当两个动点运动了x秒(0<x<4)时,解答下列问题:
(1)求点N的坐标(用含x的代数式表示);
(2)设△OMN的面积是S,求S与x之间的函数表达式;当x为何值时,S有最大值?最大值是多少?
(3)在两个动点运动过程中,是否存在某一时刻,使△OMN是直角三角形?若存在,求出x的值;若不存在,请说明理由.