若是关于
的一元二次方程
的两个根,则方程的两个根
和系数
有如下关系:
. 我们把它们称为根与系数关系定理. 如果设二次函数
的图象与x轴的两个交点为
.利用根与系数关系定理我们又可以得到A、B两个交点间的距离为:
请你参考以上定理和结论,解答下列问题:
设二次函数的图象与x轴的两个交点为
,抛物线的顶点为
,显然
为等腰三角形.
(1)当为等腰直角三角形时,求
(2)当为等边三角形时,求
(1)如图1,4条直线l1、l2、l3、l4是一组平行线,相邻2条平行线的距离都是2cm,正方形ABCD的4个顶点A、B、C、D分别在l1、l3、l4、l2上,求该正方形的面积;
(2)如图2,把一张矩形卡片ABCD放在每格宽度为18mm的横格纸中,恰好四个顶点都在横格线上,已知∠1=36°,求长方形卡片的周长.(精确到1mm)(参考数据:sin36°≈0.60,cos36°≈0.80,tan36°≈0.75)
(1)如图1,已知⊙O的半径是4,△ABC内接于⊙O,AC=4.
①求∠ABC的度数;
②已知AP是⊙O的切线,且AP=4,连接PC.判断直线PC与⊙O的位置关系,并说明理由;
(2)如图2,已知▱ABCD的顶点A、B、D在⊙O上,顶点C在⊙O内,延长BC交⊙O于点E,连接DE.求证:DE=DC.
从南京站开往上海站的一辆和谐号动车,中途只停靠苏州站,甲、乙、丙3名互不相识的旅客同时从南京站上车.
(1)求甲、乙、丙三名旅客在同一个站下车的概率;
(2)求甲、乙、丙三名旅客中至少有一人在苏州站下车的概率.
(1)解不等式组;
(2)先化简,再求值:,其中a是方程x2+x=6的一个根.
(1)计算:-32+(1-π)0+(-)-2;
(2)因式分解:3x2y-18xy2+27y3.