如图,某班教室有9排5列座位,请根据下面4位同学的描述,在图中标出“5号“小明的位置。1号同学说:“小明在我的后方”,2号同学说:“小明在我的左后方”,3号同学说:“小明在我的左前方”,4号同学说:“小明离1号同学和3号同学的距离一样远”。说明理由。
解方程组:
(1)
(2)
在解关于,
的方程组
时,可以用①×2-②消去未知数
;也可以用①+②×5消去未知数
,试求
的值.
如图,点A在x轴负半轴上,点B在y轴正半轴上,线段AB长为6,将线段AB绕A点顺时针旋转60°,B点恰好落在x轴上点D处,点C在第一象限内且四边形ABCD是平行四边形.
(1)求点C、点D的坐标;
(2)如图②,若半径为1的⊙P从点A出发,沿A—B—D—C以每秒4个单位长的速度匀速移动,同时⊙P的半径以每秒1个单位长的速度匀速增加,当运动到点C时运动停止,运动时间为t秒,试问在整个运动过程中⊙P与y轴有公共点的时间共有几秒?
(3)在(2)的条件下,当⊙P在BD上运动时,过点C向⊙P作一条切线,t为何值时,切线长有最小值,最小值为多少?
如图,一抛物线经过点A、B、C,点 A(−2,0),点B(0,4),点C(4,0),该抛物线的顶点为D.
(1)求该抛物线的解析式及顶点D坐标;
(2)如图,若P为线段CD上的一个动点,过点P作PM⊥x轴于点M,求四边形PMAB的面积的最大值和此时点P的坐标;
(3)过抛物线顶点D,作DE⊥x轴于E点,F(m,0)是x轴上一动点,若以BF为直径的圆与线段DE有公共点,求m的取值范围.
如图,菱形ABCD中,对角线AC、BD交于点O,点P在对角线BD上运动(B、D两点除外),线段PA绕点P顺时针旋转m°(0<m°<180º) 得线段PQ.
(1)当点Q与点D重合,请在图中用尺规作出点P所处的位置(不写作法,保留作图痕迹);
(2)若点Q落在边CD上(C点除外),且∠ADB=n°.
①探究m与n之间的数量关系;
②当点P在线段OB上运动时,存在点Q,使PQ=QD,直接写出n的取值范围.