正负电子对撞机的最后部分的简化示意如图(1)所示(俯视图),位于水平面内的粗实线所示的圆环形真空管道是正、负电子作圆运动的“容器”,经过加速器加速后的正、负电子被分别引入该管道时,具有相等的速率v,它们沿管道向相反的方向运动。在管道内控制它们转弯的是一系列圆形电磁铁,即图中的A1、A2、A3……An,共n个,均匀分布在整个圆周上(图中只示意性地用细实线画了几个,其余的用细虚线表示),每个电磁铁内的磁场都是匀强磁场,并且磁感应强度都相同,方向竖直向下,磁场区域都是直径为d的圆形。改变电磁铁内电流的大小,就可改变磁场的磁感应强度,从而改变电子偏转的角度。经过精确的调整,首先实现电子在环形管道中沿图中粗虚线所示的轨迹运动,这时电子经过每个电磁铁时射入点和射出点都在电磁铁的同一条直径的两端,如图(2)所示。这就为进一步实现正、负电子的对撞作好了准备。
(1)试确定正、负电子在管道内各是沿什么方向旋转的。
![]() |
(2)已知正、负电子的质量都是m,所带电荷都是元电荷e,重力可不计。求电磁铁内匀强磁场的磁感应强度B的大小。
如图所示,两物块A、B并排静置于高h=0.80m的光滑水平桌面上,物块的质量均为M=0.60kg。一颗质量m=0.10kg的子弹C以v0=100m/s的水平速度从左面射入A,子弹射穿A后接入B并留在B中,此时A、B都没有离开桌面。已知物块A的长度为0.27m,离开桌面后,落地点到桌边的水平距离s=2.0m。设子弹在物块A、B中穿行时受到的阻力保持不变,g取10m/s2。
(1)物块A和物块B离开桌面时速度的大小分别是多少;
(2)求子弹在物块B中穿行的距离;
(3)为了使子弹在物块B中穿行时物块B未离开桌面,求物块B到桌边的最小距离。
如图所示,在坐标xoy平面内存在B=2.0T的匀强磁场,OA与OCA为置于竖直平面内的光滑金属导轨,其中OCA满足曲线方程,C为导轨的最右端,导轨OA与OCA相交处的O点和A点分别接有体积可忽略的定值电阻R1和R2,其中R1=4.0Ω,R2=12Ω。现有一足够长、质量m=0.10kg的金属棒MN在竖直向上的外力F作下,以v=3.0m/s的速度向上匀速运动,设棒与两导轨接触良好,除电阻R1、R2外其余电阻不计,g区10m/s2,求:
(1)金属棒MN在导轨上运动时感应电流的最大值;
(2)外力F的最大值;
(3)金属棒MN滑过导轨OC段,整个回路中产生的热量。
如图所示,一带电微粒质量m=2.0×10-11kg、电荷量q=+1.0×10-5C,从静止开始经电压为U1=100V的电场加速后,水平进入两平行金属板间的偏转电场中,微粒射出电场时的偏转角θ=30°,并接着进入一个方向垂直纸面向里、宽度D=34.6cm的匀强磁场区域。已知偏转电场中金属板长L=20cm,两板间距d=17.3cm,重力忽略不计。求:
(1)带电微粒进入偏转电场时的速率v1;
(2)偏转电场中两金属板间的电压U2;
(3)为使带电微粒不会由磁场右边射出,该匀强磁场的磁感应强度B至少为多大?
2008年9月我国成功发射“神舟七号”载人航天飞船。如图所示为“神舟七号”绕地球飞行时的电视直播画面。由图中显示的数据可知,飞船距地面的高度约为地球半径的。已知地球半径为R、地面附近的重力加速度为g,飞船、大西洋星、太平洋星和印度洋星绕地球的运动均可视为匀速圆周运动。
(1)估算“神舟七号”飞船的轨运行的加速度的大小;
(2)已知大西洋星距地面的高度约为地球半径的6倍,估算大西洋星运行的速率。
如图所示,质量m=2.0kg的小滑块,由静止开始从倾角θ=30°的固定光滑斜面
的顶端A滑至底端B,A点距离水平地面的高度h=5.0m,重力加速度g取10m/s2,求:
(1)滑块由A滑到B经历的时间;
(2)滑块由A滑到B的过程中重力的最大功率。