已知抛物线L:
(1)证明:不论k取何值,抛物线L的顶点C总在抛物线上;
(2)已知时,抛物线L和x轴有两个不同的交点A、B,求A、B间距取得最大值时k的值;
(3)在(2)A、B间距取得最大值条件下(点A在点B的右侧),直线y=ax+b是经过点A,且与抛物线L相交于点D的直线. 问是否存在点D,使△ABD为等边三角形,如果存在,请写出此时直线AD的解析式;如果不存在,请说明理由.
如图,在平面直角坐标系xOy中,一次函数的图象与反比例函数
的图象交于A(-1,4),B(2,m)两点.
(1)求一次函数和反比例函数的解析式;
(2)直接写出不等式的解集.
已知△ABC如图所示地摆放在边长为1的小正方形组成的网格内,将△ABC绕点C顺时针旋转90°,得到△.
(1)在网格中画出△;
(2)直接写出点B运动到点所经过的路径的长.
解方程:.
某品牌汽车生产厂为了占领市场提高销售量,对经销商采取销售奖励活动,在2014年10月前奖励办法以下表计算奖励金额,2014年10月后以新奖励办法执行.某经销商在新奖励办法出台前一个月共售出某品牌汽车的A型和B型共413台,新奖励办法出台后的第一个月售出这两种型号的汽车共510台,其中A型和B型汽车的销售量分别比新奖励办法出台前一个月增长25%和20%.2014年10月前奖励办法:
销售量(x台) |
每台奖励金额(元) |
0<x≤ 100 |
200 |
100<x≤300 |
500 |
x>300 |
1000 |
(1)在新办法出台前一个月,该经销商共获得奖励金额多少元?
(2)在新办法出台前一个月,该经销商销售的A型和B型汽车分别为多少台?
(3)若A型汽车每台售价为10万元,B型汽车每台售价为12万元.新奖励办法是:每销售一台A型汽车按每台汽车售价的给予奖励,每销售一台B型汽车按每台汽车售价的
给予奖励.新奖励办法出台后的第二个月,A型汽车的销售量比出台后的第一个月增加了
; 而B型汽车受到某问题零件召回的影响,销售量比出台后的第一个月减少了
,新奖励办法出台后的第二个月该经销商共获得的奖励金额355680元,求
的值.
如图,直线AB与CD相交于点O,.
(1)如图1,若OC平分,求
的度数;
(2)如图2,若,且OM平分
,求
的度数.