如图所示,我班同学组织课外实践活动,预测量一建筑物的高度,在建筑物附近一斜坡A点测得建筑物顶端D的仰角为30°,在坡底C点测得建筑物顶端D的仰角为60°,已知A点的高度AB为20米,AC的坡度为1∶1 (即AB∶BC=1∶1),且B、C、E三点在同一条直线上,请根据以上条件求出建筑物DE的高度(测量器的高度忽略不计).
为深化义务教育课程改革,某校积极开展拓展性课程建设,计划开设艺术、体育、劳技、文学等多个类别的拓展性课程,要求每一位学生都自主选择一个类别的拓展性课程.为了了解学生选择拓展性课程的情况,随机抽取了部分学生进行调查,并将调查结果绘制成如下统计图(部分信息未给出)
根据统计图中的信息,解答下列问题:
(1)求本次被调查的学生人数.
(2)将条形统计图补充完整.
(3)若该校共有1600名学生,请估计全校选择体育类的学生人数.
下列 网格图都是由9个相同的小正方形组成,每个网格图中有3个小正方形已涂上阴影,请在余下的6个空白小正方形中,按下列要求涂上阴影:
(1)选取1个涂上阴影,使4个阴影小正方形组成一个轴对称图形,但不是中心对称图形.
(2)选取1个涂上阴影,使4个阴影小正方形组成一个中心对称图形,但不是轴对称图形.
(3)选取2个涂上阴影,使5个阴影小正方形组成一个轴对称图形.
(请将三个小题依次作答在图1、图2、图3中,均只需画出符合条件的一种情形)
如图,矩形 中,点 为 上一点, 为 的中点,且 .
(1)当 为 中点时,求证: ;
(2)当 时,求 的值;
(3)设 , ,作点 关于 的对称点 ,连接 , ,若点 到 的距离是 ,求 的值.
如图1,地面 上两根等长立柱 , 之间悬挂一根近似成抛物线 的绳子.
(1)求绳子最低点离地面的距离;
(2)因实际需要,在离 为3米的位置处用一根立柱 撑起绳子(如图 ,使左边抛物线 的最低点距 为1米,离地面1.8米,求 的长;
(3)将立柱 的长度提升为3米,通过调整 的位置,使抛物线 对应函数的二次项系数始终为 ,设 离 的距离为 ,抛物线 的顶点离地面距离为 ,当 时,求 的取值范围.
如图, 是以 为直径的半圆 的切线, 为半圆上一点, , , 的延长线相交于点 .
(1)求证: 是半圆 的切线;
(2)连接 ,求证: ;
(3)若 , ,求 的长.