匀强电场的方向沿轴正向,电场强度随的分布如图所示。图中和均为已知量。将带正电的质点在点由能止释放。离开电场足够远后,再将另一带正电的质点放在点也由静止释放,当在电场中运动时,、间的相互作用力及相互作用能均为零;离开电场后,、间的相作用视为静电作用。已知的电荷量为Q,和的质量分别为和。不计重力。
(1)求在电场中的运动时间,
(2)若的电荷量,求两质点相互作用能的最大值.
(3)为使离开电场后不改变运动方向,求所带电荷量的最大值.
为了缩短下楼的时间,消防队员往往抱着竖直杆从楼上直接滑下,先以尽可能大的加速度沿杆做匀加速直线运动,再以尽可能大的加速度沿杆做匀减速直线运动。假设一名质量为m=65kg训练有素的消防队员(可视为质点),在沿竖直杆无初速下滑至地面的过程中,重心共下移了s=11.4m,已知该队员与杆之间的最大滑动摩擦力可达f=975N,队员着地时的速度不能超过V1=6m/s,重力加速度为10m/s2,,忽略空气对队员的作用力。求
(1)该队员下落过程中的最大速度。
(2)该队员下落过程中的最短时间。
目前,我国正在实施“嫦娥奔月”计划.如图所示,登月飞船以速度v0绕月球做圆周运动,已知飞船质量为m=1.2×104kg,离月球表面的高度为h=100km,飞船在A点突然向前做短时间喷气,喷气的相对速度为u=1.0×104m/s,喷气后飞船在A点的速度减为vA,于是飞船将沿新的椭圆轨道运行,最终飞船能在图中的B点着陆( A.B连线通过月球中心,即A.B两点分别是椭圆的远月点和近月点),试问:
(1)飞船绕月球做圆周运动的速度v0是多大?
(2)由开普勒第二定律可知,飞船在 A.B两处的半径与速率的乘积相等,即rAvA=rBvB,为使飞船能在B点着陆,喷气时需消耗多少燃料?已知月球的半径为 R=1700km,月球表面的重力加速度为g=1.7m/s2(选无限远处为零势能点,物体的重力势能大小为Ep=
).
质量为M=0.4kg的平板静止在光滑的水平面上,如图所示,当t=0时,质量为=0.4kg的小物块A和质量为
=0.2kg的小物块B,分别从平板左右两端以相同大小的水平速度
=6.0m/s同时冲上平板,当它们相对于平板都停止滑动时,没有相碰。已知A.B两物块与平板的动摩擦因数都是0.2,g取10m/s2,求:
(1)A.B两物体在平板上都停止滑动时平板的速度;
(2)从A.B两物块滑上平板到物块A刚相对于平板静止过程中,A.B及平板组成的系统机械能损失;
(3)请在下面坐标系中画出平板运动的v—t图象(要写出计算过程)。
杂技演员在进行“顶杆”表演时,用的是一根质量可忽略不计的长竹竿,质量为30 kg的演员自杆顶由静止开始下滑,滑到杆底时速度正好为零.已知竹竿底部与下面顶杆人肩部之间有一传感器,传感器显示顶杆人肩部的受力情况如图所示,取g=" 10" m/s2.求:
(1)杆上的人下滑过程中的最大速度;
(2)竹竿的长度.
如图,一质量为1 kg的小球套在一根固定的直杆上,直杆与水平面夹角θ为30°。现小球在F=20N的竖直向上的拉力作用下,从A点静止出发沿杆向上运动,已知杆与球间的动摩擦因数m为。试求:
(1)小球运动的加速度a1;
(2)若F作用1.2s后撤去,小球上滑过程中距A点最大距离sm;
(3)若从撤去力F开始计时,小球经多长时间将经过距A点上方为2.25m的B点。