某超市为了解顾客的购物量及结算时间等信息,安排一名员工随机收集了在该超市购物的100位顾客的相关数据,如下表所示.
一次购物量 |
1至4件 |
5至8件 |
9至12件 |
13至16件 |
17件及以上 |
顾客数(人) |
30 |
25 |
10 |
||
结算时间(分钟/人) |
1 |
1.5 |
2 |
2.5 |
3 |
已知这100位顾客中的一次购物量超过8件的顾客占55%.
(Ⅰ)确定
,
的值,并估计顾客一次购物的结算时间的平均值;
(Ⅱ)求一位顾客一次购物的结算时间不超过2分钟的概率.(将频率视为概率)
在△ABC中,.
(1)求的值;
(2)当△ABC的面积最大时,求∠A的大小.
已知函数,且给定条件p:“
”,
(1)求f(x)的最大值及最小值
(2)若又给条件q:“|f(x)﹣m|<2“且p是q的充分条件,求实数m的取值范围.
某家庭进行理财投资,根据长期收益率市场预测,投资债券等稳健型产品的收益与投资额成正比,投资股票等风险型产品的收益与投资额的算术平方根成正比,已知投资1万元时两类产品的收益分别为0.125万元和0.5万元(如图).
(1)分别写出两种产品的收益和投资的函数关系;
(2)该家庭现有20万元资金,全部用于理财投资,问:怎样分配资金能使投资获得最大的收益,其最大收益为多少万元?
要使函数y=1+2x+4xa在x∈(﹣∞,﹣1]时,y>0恒成立,求实数a的取值范围.
记关于x的不等式<0的解集为P,不等式|x﹣1|≤1的解集为Q.
(1)若a=3,求P;
(2)若a>0,且Q⊆P,求a的取值范围.