在梯形ABCD中,DC∥AB,DE⊥AB于点E。
阅读理解:在图一中,延长梯形ABCD的两腰AD,BC交于点P,过点D作DF∥CB交AB于点F,得到图二;四边形BCDF的面积为S,△ADF的面积为S1,△PDC的面积为S2。
解决问题:
⑴在图一中,若DC=2,AB=8,DE=3,则S = ,S1 = ,S2 = ,则= 。
⑵在图二中,若AB=a,DC=b,DE=h,则= ,并写出理由。
拓展应用:如图三,现有一块地△PAB需进行美化,□DEFC的四个顶点在△PAB的三边上,且种植茉莉花;若△PDC,△ADE,△CFB的面积分别为2m2,3 m2,5 m2且种植月季花。已知1 m2茉莉花的成本为120元,1 m2月季的成本为80元。试利用⑵中的结论求□DEFC的面积,并求美化后的总成本是多少元?
某中学计划购买A型和B型课桌凳共200套,经招标,购买一套A型课桌凳比购买一套B型课桌凳少用40元,,且购买4套A型和6套B型课桌凳共需1820元。
(1)求购买一套A型课桌凳和一套B型课桌凳各需多少元?
(2)学校根据实际情况,要求购买这两种课桌凳总费用不能超过40880元,并且购买A型课桌凳的数量不能超过B型课桌凳的,求该校本次购买A型和B型课桌凳共有几种方案?哪种方案的总费用最低?
某宾馆为庆祝开业,在楼前悬挂了许多宣传条幅,如图所示,一条幅从楼顶A处放下,在楼前点C处拉直固定,小明为了测量此条幅的长度,他先在楼前D处测得楼顶A点的仰角为31°,再沿DB方向前进16米到达E处,测得点A的仰角为45°,已知点C到大厦的距离BC=7米,,请根据以上数据求条幅的长度(结果保留整数.参考数据:
)
甲、乙两人同时从相距90千米的A地前往B地,甲乘汽车,乙骑摩托车,甲到达B地停留半个小时后返回A地,如图是他们离A地的距离(千米)与
(时间)之间的函数关系图像
(1)求甲从B地返回A地的过程中,与
之间的函数关系式,并写出自变量
的取值范围;
(2)若乙出发后2小时和甲相遇,求乙从A地到B地用了多长时间?
如图,在菱形ABCD中,AB=2,,点E是AD边的中点,点M是AB边上一动点(不与点A重合),延长ME交射线CD于点N,连接MD,AN.
(1)求证:四边形AMDN是平行四边形;
(2)填空:①当AM的值为时,四边形AMDN是矩形;
②当AM的值为时,四边形AMDN是菱形。
5月31日是世界无烟日,某市卫生机构为了了解“导致吸烟人口比例高的最主要原因”,随机抽样调查了该市部分18~65岁的市民,下图是根据调查结果绘制的统计图,根据图中信息解答下列问题:
(1)这次接受随机抽样调查的市民总人数为
(2)图1中m的值为
(3)求图2中认为“烟民戒烟的毅力弱”所对应的圆心角的度数;
(4)若该市18~65岁的市民约有200万人,请你估算其中认为导致吸烟人口比例高的最主要原因是“对吸烟危害健康认识不足”的人数。